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Abstract

The most important point in the design of broadcast encryption schemes
(BESs) is obtain a good trade-o� between the amount of secret informa-
tion that must be stored by every user and the length of the broadcast
message, which are measured, respectively, by the information rate � and
the broadcast information rate �B. In this paper we present a simple
method to combine two given BESs in order to improve the trade-o�
between � and �B by �nding BESs with good information rate � for ar-
bitrarily many di�erent values of the broadcast information rate �B. We
apply this technique to threshold (R;T )-BESs and we present a method
to obtain, for every rational value 1=R � �B � 1, a (R; T )-BES with
optimal information rate � among all (R; T )-BESs that can be obtained
by combining two of the (R;T )-BESs proposed by Blundo et al. [7].

Keywords: Cryptography, Key distribution, Broadcast encryption, Key pre-
distribution schemes.

1 Introduction

This paper deals with key distribution methods that are suitable for situations
in which some groups of users in a network need to securely and privately
communicate between them. This communication can be done eÆciently by
using a symmetric encryption algorithm. The main problem is that symmetric
algorithms require that the users in the group stablish a common key before
starting the communication. Usually, an on-line key distribution center is used,
which provides a common key to every user in a group just before these users
need to communicate between them. Other solutions are based on the use
of an o�-line key distribution center , which, in a previous phase, distributes
some secret information among all users in the network. Every user will use the
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information it received to compute the common keys associated with the groups
it belongs to. See [13] for an overview on key distribution systems.

Key predistribution schemes (KPSs) and broadcast encryption schemes (BESs)
have been introduced as key distribution systems that can be used by an o�-line
key distribution center.

A key predistribution scheme (KPS), which is called a zero-message broadcast

encryption scheme in [4, 8], is a method by which a trusted authority (TA)
distributes secret information among a set of users in such a way that every user
is able to compute the keys corresponding to the privileged groups it belongs to.
Besides, certain coalitions of users (forbidden subsets) outside a privileged group
must not be able to �nd any information on the value of the key associated with
that group. A broadcast encryption scheme (BES) consists of two phases. In
the �rst one, in a similar way as in a KPS, some secret information is sent by
the TA to every user. In the second phase, the TA broadcasts through an open
channel an encrypted message in such a way that every user in some privileged
subset is able to decrypt it. This message will be used by the users in this group
as a common key for secure communication. The users in a forbidden subset
cannot obtain any information on the message that has been sent by the TA. In
general, every user must receive a smaller amount of secret information in a BES
that in a KPS. This is due to is less than Broadcasting some public information
in a BES makes it possible, in general, to reduce KPS. We are interested here
in unconditionally secure schemes , that is, schemes whose security does not
depend on any computational assumption. The broadcast encryption schemes
we consider in this paper are called one-time broadcast encryption schemes in [9,
14] because just one single broadcast can be securely made by such schemes.
This is due to the fact that the broadcast message can provide to a user in a
privileged subset some information about the secret information of the other
users in this subset.

Key predistribution schemes were introduced by Blom [3] and have been
also considered in [4, 5, 8, 9, 11, 14, 15, 16]. The �rst broadcast encryption
schemes were proposed by Berkovits [2] and Fiat and Naor [8]. Afterwards,
several authors have studied these schemes [1, 4, 6, 7, 9, 10, 12, 14, 15]. A good
survey on these subjects can be found in [14].

The speci�cation structure � of a KPS or a BES is the family of all pairs
(P; F ) of subsets of the set of users U such that every user in P must be able
to compute a common key that will remain unknown to the coalition F . A
subset P � U is a privileged subset of the speci�cation structure � if there
exists F � U such that (P; F ) 2 �. The family of the privileged subsets of � is
denoted by P(�). A �-KPS and a �-BES are, respectively, a key predistribution
scheme and a broadcast encryption scheme with speci�cation structure �. The
speci�cation structures that have been considered in most previous works about
key predistribution and broadcast encryption are in the form � = (P ;F) =
f(P; F ) 2 P � F : P \ F = ;g, where P ;F � 2U . Threshold speci�cation

structures , that is, the speci�cation structures in which P and F consist of
the subsets of U with some given number of users have received considerable
attention. If P consists of all subsets of U with cardinality R and F is formed
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by the coalitions of at most T users, a (P ;F)-KPS (BES) is called also a (R; T )-
KPS (BES). In a (� R; T )-KPS (BES), the family of privileged subsets consists
of all subsets of U with cardinality at most R.

The information rate and the broadcast information rate are the main para-
meters to measure the eÆciency of a broadcast encryption scheme. The infor-
mation rate of a BES (or a KPS) is the ratio between the length in bits of the
secret message (or the common key) and the maximum length of the secret in-
formation received by the users. In a BES, one has to consider also the length of
the encrypted message to be broadcast by the TA. The ratio between the length
of the secret message and the broadcast message is the broadcast information

rate.
In a BES, the information rate and the broadcast information rate can not

be optimized at the same time. In general, the information rate must decrease
in order to increase the broadcast information rate.

An easy way to obtain a broadcast encryption scheme is to distribute a
random value ui 2 G, where G is an Abelian group, to every user i 2 U . In
order to send a secret message kP 2 G to the users in a privileged subset P , the
TA broadcasts the message mP = (mi)i2P , where mi = kp + ui. In this case,
the information rate is maximum, � = 1, but the broadcast information rate
can be very small, �B = 1=(maxP2P(�) jP j).

On the other hand, a �-BES with maximum broadcast information rate
�B = 1 can be constructed from any �-KPS such that, for every privileged
subset P , the common key uP is an element of an Abelian group G. In that
case, the broadcast message is mP = kP + uP , where uP is the common key
that can be computed by the users in P in the �-KPS. The information rate of
this �-BES coincides with the information rate of the �-KPS.

One of the problems that have been most considered in previous works about
broadcast encryption is obtaining a good trade-o� between the information rate
and the broadcast information rate. That is, given a speci�cation structure �,
one is interested in �nding a family of �-BESs between the two extremal cases
above with an optimal relation between their information rate and broadcast
information rate. In other words, a family of �-BESs whose information rates
verify �� < � < 1 and 1=R < �B < 1, where �� is the best information rate
for a �-KPS and R = maxP2P(�) jP j, such that it is not possible to improve
simultaneously both information rates in any of these schemes.

Several bounds have been given for the information rate of a KPS [4, 9].
The optimality of the (� R; T )-KPSs proposed in [5, 8] is derived from these
bounds. Blundo, Frota-Mattos and Stinson present in [6] a family of (R; T )-
BESs obtaining a trade-o� between the information rate and the broadcast
information rate. The BESs in this family have broadcast information rate
�B = r

R
, r 2 f1; : : : ; Rg. These BESs are constructed by using the optimal

threshold KPSs given in [5]. Nevertheless, no general bounds have been found
about the relation between the information rate and the broadcast information
rate of a BES in order to prove or disprove the optimality of the BESs in [6].

The general problem that would be interesting to solve is the following:
given a speci�cation structure � and a value of �B 2 (0; 1), to �nd a �-BES
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with broadcast information rate �B and optimal information rate �. In other
words, to �nd a method to determine the values of the function

��(�; �B) = supf � : there exists a �-BES with information rates �, �B g:

At the moment, this is still an open problem, but we present in this work some
contributions to the solution of this problem.

The main result of this paper is to obtain (R; T )-BESs with �B = h, for any
rational value h 2 [1=R; 1]. This will be attained by applying to the (R; T )-BESs
given by Blundo et al. in [7] a simple combination method we present in this
paper. We determine, among all possible combinations, the best one in order
to to obtain the maximum information rate. In this way, we obtain a function
� = g(�B), which provides a lower bound on ��(�; �B), for � = (R; T ) and for
every rational value of �B 2 [1=R; 1].

The main concepts about broadcast encryption schemes as well as the nota-
tion that will be used are presented in Section 2. A simple method to combine
two given �-BESs is given in Sectioncombi. Section 4 is devoted to construct
a family of (R; T )-BESs by applying the combination method provided in the
previous section to the BESs given by Blundo et al. in [6].

2 Broadcast encryption schemes

Let � be a speci�cation structure on a set of users U = f1; 2; : : : ; Ng. In
a broadcast encryption scheme with speci�cation structure �, or �-BES for
short, every user i 2 U receives from the TA some secret information ui 2 Ui.
Afterwards, for any privileged subset P 2 P(�) and for any possible value of a
secret message (or secret session key) kP 2 K, the TA sends by the broadcast
channel some informationmP 2MP such that every user i 2 P can compute the
message kP from its secret information ui and the broadcast information mP .
On the other hand, any coalition F = fj1; : : : ; jsg such that (P; F ) 2 � must
not obtain any information about kP from the secret information (uj1 ; : : : ; ujs)
received by the users in F and the public information mP . That is,

p (KP = kP jUj1 = uj1 ; : : : ; Ujs = ujs ;MP = mP ) = p (KP = kP )

where KP , Uj` and MP are, respectively, the random variables corresponding
to the secret message kp, the secret information uj` and the broadcast message
mp.

A more formal de�nition of broadcast encryption schemes can be given by
using the entropy function. See [17] for an introduction to entropy and its
properties. For any subset P = fi1; : : : ; isg � U , let us consider UP = Ui1 �
� � ��Uis . We can suppose that the TA chooses a value in UU , according to some
probability distribution, in order to distribute the secret information among the
users and, afterwards, a value inMP in order to do the broadcast. A �-broadcast
encryption scheme must satisfy the following conditions:
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1. The secret message kP must be independent from the secret values dis-
tributed in the predistribution phase, that is,

H(KP jUU) = H(KP ):

2. Any participant i 2 P in a quali�ed subset P 2 P(�) is able to compute
the common key kP from its secret information ui and the broadcast
message mp:

H(KP jUiMP ) = 0:

3. Any coalition F such that (P; F ) 2 � can not obtain any information on
kP , that is,

H(KP jUFMP ) = H(KP ):

In this paper we are going to consider only BESs with uniform probability
distributions on K, Ui, UU and MP where UU � UU is the set of all possible
combinations (ui)1�i�N of secret values received by the users in U . In that
case, even joining together the secret information (uj)j2F of the users in any
coalition F , such that (P; F ) 2 �, and the broadcast message mP , all values of
the secret kP 2 K are equiprobable.

The information rate � of a BES is the ratio between the length of the secret
message kP and the maximum length of the secret information received by a
user, that is,

� =
k

u
, where k = log jKj and u = max

i2U
log jUij

The broadcast information rate �B of a BES is de�ned as the ratio between
the length of the secret message kP and the maximum length of the broadcast
message mP :

�B =
k

m
, where m = max

P2P(�)
log jMP j

3 Combination of two di�erent �-BESs

We present in this section a method, which is based on a simple combination
technique, of designing a family of �-BES from two di�erent BESs with the
same speci�cation structure �.

Let us consider �1 and �2 two �-BESs with the following properties:

1. In the �-BES �r, where r = 1; 2, every user receives the same amount of
secret information in the predistribution phase. That is, log jUr

i j = ur for
every user i 2 U and for r = 1; 2.

2. In both BESs �1 and �2, the broadcast messages corresponding to all
quali�ed subsets have the same length. It will be denoted by m1 and m2,
respectively.
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3. �B1 < �B2 and �1 > �2, where �1, �B1
and �2, �B2

are the information
rates of the two BESs.

We can design a new �-BES combining the previous two �-BESs �1 and �2

as follows:

� The secret information of user i 2 U will be (u1i ; u
2
i ), where u

1
i and u

2
i are

the secret informations of user i 2 U corresponding, respectively, to �1

and �2.

� The encrypted broadcast intended to users in a privileged set P 2 P will
be (m1

P ;m
2
P ), where m

1
P and m2

P are the broadcast messages in each BES.

� The secret intended to users in a privileged set P 2 P will be (k1P ; k
2
P ),

where k1P and k2P are the secrets in each BES.

The information rates of this new �-BES are easily computed:

�3 =
k1 + k2
u1 + u2

; �B3 =
k1 + k2
m1 +m2

;

where kr = log jKrj is the length of the secret message in the BES �r. Since

�1 =
k1
u1
; �B1 =

k1
m1

and

�2 =
k2
u2
; �B2 =

k2
m2

;

we observe that �B1 < �B3 < �B2 and �1 > �3 > �2.
Analogously, for any pair of positive integers �; � > 0, we can consider a

more general combination of the two �-BESs by combining � copies of the BES
�1 with � copies of �2. We obtain in this way a �-BES with information rates

�3 =
�k1 + �k2
�u1 + �u2

�B3 =
�k1 + �k2
�m1 + �m2

The inequalities �B1 < �B3 < �B2 and �1 > �3 > �2 still hold. We can construct
in this way an in�nite family of �-BESs with information rate � 2 (�2; �1) and
broadcast information rate �B 2 (�B1; �B2).

4 A new family of (R; T )-BESs

In this section, we apply the combination method in section 3 to the family of
(R; T )-BESs designed by Blundo et al. in [7].

Theorem 4 in [7] states that, for every integer r = 1; 2; : : : ; R, there exists
an (R; T )-BES �r such that

k =

�
R� 1

r � 1

�
; u =

�
R+ T � 1

r � 1

�
; m =

�
R

r

�
:
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Therefore, we have a family of BESs with information rates

�Br =
r

R
and �r =

�
R � 1

r � 1

��
R+ T � 1

r � 1

��1

:

From these (R; T )-BESs, we obtain lower bounds on ��(�; �B) = ��(R; T; �B)
for some values of �B . Namely,

��(R; T; r=R) �

�
R� 1

r � 1

��
R+ T � 1

r � 1

��1

=

�
T +R(1� (r=R))

T

�
�(R; T ) (1)

where r = 1; 2 : : : ; R and �(R; T ) =

�
R+ T � 1

R � 1

��1

is the optimal information

rate of a (R; T )-KPS.
Observe that this lower bound can be extended to a continous function

de�ned on the interval [1=R; 1]:

�(x) =

�
T +R(1� x)

T

�
�(R; T ) =

y(y � 1) � � � (y � T + 1)

T !
�(R; T ); (2)

where y = T +R(1� x).
Next theorems provided a method to construct (R; T )-BESs whose broadcast

information rates achieve any rational value 1=R � �B � 1. In this way, we will
obtain lower bounds on ��(R; T; �B) for these values of �B .

Theorem 1 Let us consider two (R; T )-BESs, �r1 and �r2 , where 1 � r1 <
r2 � R. Then, for every rational value

�B 2
hr1
R
;
r2
R

i
;

we can combine �r1 and �r2 to obtain an (R; T )-BES with broadcast information

rate �B and information rate � 2 [�r2 ; �r1 ].

Proof : Let us consider �Br1 =
k1
m1

and �Br2 =
k2
m2

and a rational value �B 2

(�Br1 ; �Br2). We want to �nd positive integers � and � such that

�B =
�k1 + �k2
�m1 + �m2

:

Let us take � =
�

�
. From the equation �B =

�k1 + k2
�m1 +m2

, we deduce that

� =
k2 �m2�B
m1�B � k1

. Since �B 2 (�Br1 ; �Br2), then � > 0. Moreover, since m1, m2,

k1 and k2 are integer numbers, � is a rational number. If �B = r1=R, we have
to take � = 1 and � = 0, and we consider � = 0 and � = 1 if �B = r2=R.

For every rational value �B 2 (�Br1 ; �Br2), we denote by �(r1; r2; �B) the
(R; T )-BES with broadcast information rate that, according to Theorem 1, is
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obtained by combining �r1 and �r2 . Next, we are interested in determining, for
every rational value �B 2 (1=R; 1), the values of r1 and r2 that maximize the
information rate of the (R; T )-BES �(r1; r2; �B).

Theorem 2 Let us consider a rational value

�B 2

�
1

R
; 1

�
:

Then, the maximum information rate of the (R; T )-BESs in the form �(r1; r2; �B)
is obtained for r1 = bR�Bc and r2 = r1 + 1.

Proof : Let us consider r 2 f1; 2 : : : ; R� 2g and two integers �, � with 1 � � <

� � R�r. Let �B be a rational value in the interval

�
r

R
;
r + �

R

�
. We are going

to prove next that the (R; T )-BES �(r; r + �; �B) has better information rate
than the (R; T )-BES �(r; r + �; �B). Let us consider r1 = r, r2 = r + � and
r3 = r + �, and let

�1 =
k1
u1
; �B1 =

k1
m1

=
r1
R

and

�2 =
k2
u2
; �B2 =

k2
m2

=
r2
R

be, respectively, the information rates of the (R; T )-BESs �r1 and �r2 . Since

�B 2
�r1
R
;
r2
R

i
, there exists � � 0 such that �B =

�k1 + k2
�m1 +m2

. Then, � =

�k1 + k2
�u1 + u2

is the information rate of �(r1; r2; �B). The previous equalities allow

to express � as a function of �B . Namely,

� = f(�B) =
(k2m1 � k1m2)�B

(u2m1 � u1m2)�B � (u2k1 � u1k2)
=

a2�B
b2�B � c2

:

Considering the (R; T )-BESs in the form �(r1; r3; �B) we obtain, analogously,

� = g(�B) =
(k3m1 � k1m3)�B

(u3m1 � u1m3)�B � (u3k1 � u1k3)
=

a3�B
b3�B � c3

:

Let us observe that a2; b2; c2; a3; b3; c3 > 0. It is enough to prove that f(x) >

g(x) for all x 2
�r1
R
;
r2
R

i
. Let us consider the function q(x) =

f(x)

g(x)
, derivable

in the interval
hr1
R
;
r2
R

i
. The derivative of this function is

q0(x) =
a2(b2c3 � b3c2)

a3(b2x� c2)2
:

Then q0(x) has constant sign, and therefore q(x) is a monotone function in the
above interval. Since q(k1=m1) = 1, we only need to �nd a value x0 > k1=m1

such that q(x0) > 1, that is, such that f(x0) > g(x0).
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Let us consider x0 =
r2
R

=
k2
m2

. Then,

f
�r2
R

�
=

(k2m1 � k1m2)r2
u2m1(r2 � r1)

and g
�r2
R

�
=

(k3m1 � k1m3)r2
u3m1(r2 � r1) + u1m3(r3 � r2)

:

Now,

f
�r2
R

�
> g

�r2
R

�
() (r3 � r1)

u2
m2

< (r2 � r1)
u3
m3

+ (r3 � r2)
u1
m1

: (3)

In our case,

u1 =

�
R+ T � 1

r � 1

�
; u2 =

�
R+ T � 1

r + �� 1

�
; u3 =

�
R+ T � 1

r + � � 1

�
;

m1 =

�
R

r

�
; m2 =

�
R

r + �

�
; m3 =

�
R

r + �

�
:

Replacing in (3) and simplifying, we obtain the following inequality:

0 < (R� r) � � � (R� r � � + 1)(� � �)r + (R+ T � r) � � � (R+ T � r � �+ 1)A;

where

A = �(r+�)(R+T�r��) � � � (R+T�r��+1)��(r+�)(R�r��) � � � (R�r��+1):

Equivalently,

0 < (R� r��) � � � (R� r��+1)(���)r+
R+ T � r

R� r
� � �

R + T � r � �+ 1

R� r � �+ 1
A:

Since (R + T � k)=(R � k) > 1 for every k � 0, then it suÆces to prove the
following inequality

0 < (R � r � �) � � � (R � r � � + 1)(� � �)r +A;

which is equivalent to

0 < r(� � �) + �(r + �)
R + T � r � �

R � r � �
� � �

R + T � r � � + 1

R� r � � + 1
� �(r + �):

The previous inequality holds if

0 � r(� � �) + �(r + �)� �(r + �);

which is obviously satis�ed.
Analogous computations show that, for every r 2 f3; : : : ; Rg, for every pair

of integers �, � with 1 � � < � < r and for every �B 2

�
r � �

R
;
r

R

�
, the
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(R; T )-BES �(r � �; r; �B) has better information rate than the (R; T )-BES
�(r � �; r; �B).

Finally, as a consequence of the partial results previously proved, we can
conclude that given a rational value

�B 2

�
1

R
; 1

�
;

the maximum information rate of the (R; T )-BESs in the form �(r1; r2; �B) is
obtained for r1 = bR�Bc and r2 = r1 + 1.

Examples

We are going to show two graphic examples of the optimal value of �, obtained
by combining two Blundo et al. (R; T )-BESs, for several values of �B .

We represent �B in the x axis and log � in the y axis. Large dots correspond
to values of �B for which there exists a Blundo et al. (R; T )-BES, while small
dots correspond to the optimal combination of two Blundo et al. (R; T )-BESs
given by Theorem 1. The continous curve is the graph of the function �(x)
de�ned in Equation (2).

In Figure 1, we consider (R; T ) = (5; 3), and (R; T ) = (7; 12) in Figure 2.

–1.5

–1

–0.5

0
0.4 0.6 0.8 1

Figure 1: Optimal combination of two Blundo et al. (5; 3)-BES

5 Conclusions and open problems

In this paper we have obtained the following results:
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–4

–2

0
0.2 0.4 0.6 0.8 1

Figure 2: Optimal combination of two Blundo et al. (7; 12)-BES

� Given a speci�cation structure � and two �-BESs with parameters �B1
<

�B2
and �1 > �2, we have seen how to obtain a family of �-BES with

broadcast information rate in the interval (�B1
; �B2

) and information rate
in the interval (�2; �1).

� Given positive integers R and T , we have shown how to obtain a family of
di�erent (R; T )-BES with broadcast information rate �B , for any rational
value �B 2 [1=R; 1], combining two Blundo et al. (R; T )-BESs.

� Given positive integers R, T , and a rational value �B 2 [1=R; 1], we have
proved that the optimal (R; T )-BESs with broadcast information rate �B
designed by combining two Blundo et al. (R; T )-BESs with broadcast
information rates �B1

= r1=R and �B2
= r2=R is obtained when r1 =

bR�Bc and r2 = r1 + 1.

Some important open problems in the design of broadcast encryption schemes
appear from the fact that very few is known about the values of the function
��(�; �B), which gives the optimal trade-o� between � and �B .

From the BESs proposed by Blundo et al. in [7] for threshold speci�cation
structures � = (R; T ), we obtain the lower bound given in Equation (1). The
�rst open problem we can consider is to determine whether the inequality in
equation (1) is an equality or not. If this equality were true, the (R; T )-BESs
proposed by Blundo et al. in [7] would have an optimal trade-o� between � and
�B .

Our construction provide a lower bound on ��(R; T; �B) for any rational
value �B 2 [1=R; 1]. This lower bounds are represented by the small points in
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Figures 1 and 2. The second open problem is to determine if these lower bound
is tight.

On the other hand, we have seen that the lower bound given in Equation (1)
can be extended in a natural way to continous function �(x), which is de�ned
by Equation (2) and whose graph is the continous curve in the �gures. The
last open problem is to determine the relationship between this function and
the function ��(R; T; �B). We conjecture that ��(R; T; �B) � �(�B) for any
�B 2 [1=R; 1]. The optimality of the (R; T )-BESs proposed by Blundo et al.
in [7] would be a direct consequence of this fact.
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