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Abdgract. Sream diphers are an important dass of encryption agorithms, which are widdy used in practice.
In this paper the security of the WAKE stream cipher is investigated. We present two chosen plaintext atacks on
this cipher. The complexities of these attacks can be estimated as 104 and 1014,
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1 Introduction

Symmetric cryptosysems can be subdivided into block and stream ciphers. Block ciphers operate
with a fixed trandformation on large blocks of plantext data Sream ciphers operate with a time-
vaying trandormaion on individud plantext digits Typicdly, a sream dpher condds of a
keystream generator whose pseudo-random output sequence is added modulo 2 to the plaintext bits,
A mgor god in dream cipher design is to efficiently produce random+looking sequences. But the
keystream can be generated efficiently; there cartainly exists such asmple description.

WAKE is the Word Auto Key Encryption dgorithm, invented by David Wheder [1]. It has a
very smple description and produces a stream of 4n-bit words, which can be XORed with a plaintext
sream to produce ciphertext, or XORed with a ciphertext sream to produce plaintext. It is fast on
most modern computers, and relies on repeated table use and having a large sae space. WAKE
works in CFB mode; the previous ciphertext word is used to generate the next key word. It is being
usd in the current verson of Dr. Solomon's Anti-Virus program [9]. It is known that WAKE is
insecure againd a chosen plaintext or chosen ciphertext atack but descriptions and complexities of
these attacks are unknown.

The am of this paper is to describe two chosen plaintext attacks on WAKE that are intringc
to the dedgn principles of WAKE and are independent of the key scheduling. The complexities of
these attacks can be esimated as 2*™+2%" for firg and 2*"+2°" for second. Our agorithms become
infeasble for n>8,

The paper is organized as follows. In section 2 we give a decription of WAKE. In section 3
we discuss some properties of WAKE. Section 4 describes atacks on WAKE. We conclude in
Section 5.

2 Description of WAKE

In fact the WAKE dream cipher is a family of dgorithms indexed by a postive integer n (in practice
n=8). It works in CFB mode; the previous ciphertext word is used to generate the next key word. It



usss a table T={TI[Q],...,T[2-1] } of 2" 4n-bit words. This table T has a specid property: the high-
order n-hit of dl the entries is a permutation of dl possble n-bit words, and the loworder 3n-bit
words are random.
The internd date of WAKE a time t congds of four 4nbit words a, b, G, d. Thetable T
andinitid &, by, co, dy are generated from the key.
Let P=py, p2,..., pL beaplantext and Y=y, y»,..., y. beaciphertext
The next-gate and output functions of WAKE for every t are defined by
The next-state function F
a=M(@1yi1, T)
bi = M(b.1,a, T)
G = M(G-1,b;, T)
di = M(d.1,c, T)

The output-function
z=d

EnchEtion
Yi=ZA P

Dencryption
pi=zA g

Thus we have yi=Hyi-1, a-1, b-1, G-1, di-1).
Thetrandormation M(X, y, T) isan invertible transformation defined by:

M(x, y, T) = (x +y) >>n A T[(x+ y)(mod 2)].

Thisisshown in Fgure 1. The operation >> isaright shift, not arotation.
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3 Properties of WAKE

In this section we decribe some properties of WAKE, which are important in the description of
chosen plaintext attacks on this cipher.

Proposition 1
Thetransformation F(k, .1, b1, Ci.1, di.e ,T) whereki {0,...,2*"-1} isapermutation on {0,...,2*"-1} .
Proof.
Note that M(x, y, T), whereyi {0,...,2°"1}, isapermutation on {0,...,2*"-1} becauseif
(x+ y1) >>n A T[(x+ y1)(mod 2")]= (x + y2) >>n A T[(x + y2)(mod 2')],
whereys, yo 1 {0,...,2°"-1}, yit y», then
o T[(x+ yr)(mod 2")]=T[(x + y2)(mod 27)],
(X+ y1) >>n=(x + y2) >>n.
It followsthat y1=y».
Note that F(k, a.1, b1, G1, da ,T) is a compodtion of permutation and can be represented as
follows
F(k, &1, b1, G-1, d.1 , T)=M(Ci-1, M(dh.1, M( bi-1, M(a.1, K)))).
Therefore, Fisapermutation on{0,...,2*"-1} .
The proposition is proved.

Let a(Pik, Pi-k+1,---s Pi-), Bi(P-k, Prksts -y P1)y G(Picks Pickt s, Pi-1), G(Piks -+, Pi-1) be meaningsof A,
B, C, D regigers & time i providing that p-k, Pi-k+1,---, p-1 have been ciphered. Let y(pik,..-, B-1, P)
beai" word of aciphertext a timei which is obtained after being ciphered pi, pik+t...., Pi-

Proposition 2
Letal Z,.

1. Thenumber of dementsj such that d[j]>>3n=T[a] is2*".
2. Thenumber of dementsj such that G[j]>>3n=di[j]>>3n=T[a] is2*".
3. Thenumber of dementsj such that bi[j]>>3n=c;[j]>>3n=di[j]>>3n= T[a] is 2".
4. Thenumber of dements such that g[j]>>3n=b;[j]>>3n=c;[j]>>3n=d|[j]>>3n=T[a] is 1.
Proof.
i .. 2.1 0

) .. I is a pemutation of dl
Cd[j] . d[2"-1p

possible 4n-bit and the high-order n-bit of al the entries of T isapermutation of dl possble n-hit
Thus, the number of dements;j such thet d[j]>>3n=T[a] is2>" =2*"/2".
If ¢[j]>>3n=di[j]>>3n=T[a], then
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Let us remak tha r ition 1
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di[j]=( g[j]+di-1) >>n A T[a],
a=(q[j]+di.1) (mod 2'),
therefore, the second-order n-bit and the third-order nrhit of c[j] are arbitrary. Thus, the number of
dementsj such that ¢i[j]>>3n=di[j]>>3n= T[a] is2*".
If b[j]>>3n=c[j]>>3n=di[]]>>3n=T[a], then
ciliI=( blj]+ci1) >n A T(a],
a=(h[j]+ci-1) (mod 2),



and the third-order n-bit of ¢[j] is abitrary, hence third-order n-bit of by[j] is dso abitrary. It
follows thet the number of dementsj such thet bi[j]>>3n=ci[j]>>3n=di[j]>>3n= T[a] is2".

It is obvious that if a[j]>>3n=bi[j]>>3n =G [j]>>3n=di[j]>>3n=T[a], then thereisthe only bj].

The proposition is proved.

Proposition 3
Thehigh-order n-hitof d(k+2%"),...,dik+r2"),... di(k+(2"-1)2") isa permutation on {0,...,2"-1} .
Proof.
Note that
a(k+r2")=( k+r22"+g.1)>>n A T[(k+r2>"+a_1)(mod 2")]=( k+r23"+a_1)>>n A T[(k+a.1)(mod 2")].
Thus, a(k+r2>") (mod 2= a(k+2°") (mod 2, a(k+r23">>3n= ai(k+23") >>3n, r=0...2"-1, and the
third-order n-bit of a(k+2%"),....a(k+r2>"),... a(k+(2"-1)2>") isapermutation on {0,...,2"- 1} .
By
bi(k+r2°")=(ai(k+r2>")+b_1)>>n A T[(a(k+r2>")+b.1)(mod 2Y)],
it follows thet bi(k+r2°") (mod 2")=bi(k+2°") (mod 2"), b(k+r23">>3n=bj(k+23") >>3n, r=0...2"-1.
Usng
Gi(k+r2°M=(bi(k+r2>"+6.1)>>n A T[(bi(k+r 2")+G.1)(mod 2")],
weget G(k+r23")>>3n=c;(k+23") >>3n, r=0...2" 1.

Let us remak that (G(k+23"+diq)(mod 27....,(c(k+r23M+di1)(mod 2",...,(ci(k+(2"-1)x
2"M+d.)(mod 2") ae dl vaious, therefore the highorder nrbit of  di(k+2"),...,d(k+r2%"),...,
di(k+(2"-1)2%") are different.

The proposition is proved.

Proposition 4
Thehigh-order n-hit of a(k+22"),...,ci(k+r2"),...,ci(k+(2"-1)2°") isapermutation on {0,...,2"-1} .
Proof.
By
a(k+r2")=( k+r2?"+a.1)>>n A T[(k+r2°"+a_1)(mod 2")],
bi(k+r 27" =(ay(k+r2*")+h.1)>>n A T[(a(k+r 22")+0.1)(mod 2],
Gi(k+r22")=(bi(k+r22"+a6.1)>>n A T[(bi(k+r2>")+G-1)(mod 2],
whererl Z - it followsthat

2
a(k+r2%" (mod 2"=ai(k+22") (mod 2",
a(k+r22M>>3n= a;(k+22") >>3n,
bi(k+r2°M>>3n= bi(k+22") >>3n,
and (bi(k+2°")+ci.)(mod 2"),...,(a(k+r2°")+6.)(mod 2"),...,(a(k+(2"-1)x 22")+c.1)(mod 2) are
various, therefore the high-order n-bit of G(k+22"),...,ci(k+r 22", ..., ci(k+(2-1)2*") are different.
The proposition is proved.

Remark
Thehigh-order nhit of G(k+23"),...,ci(k+r2%").,... ci(k+(2"-1)2%") are equd.
It follows by propostion 3.



4 Attackson WAKE

In this section we describe two chosen plaintext attacks on WAKE stream cipher.

Fird let us cary out an esimation of the unidty disance Dwake of WAKE. Recdl tha the
unidty distance is the number of keystream symbols that need to be observed in a known plaintext
atack before the key can be uniqudy determined. Note that the number of various states of WAKE

isequal to 216%24n)”"  Thenwe get that 216m24ny>" . (24 \Pwake | Therefore, Dwake » 4+2"

Let B (k) be a " word of a plantext WhICh is equa to k, i.e. p(k)=k. Letus denote with
mark " dements of an output sequence{z "} produced on a guessed state and the guessed table O.
The method conggts of three steps.

Thefirst attack

Step 1
Choosekj, k. (For example, k;=0, ko=0)
1. Encrypt pi(ky) to obtain yi(ki).
2. Determine tb= pa(k1) A yi(ka).
3. ;ncr;;pt P(0), p(2),...,pAb),..., p2(24”-1) to obtain y(ki, 0), yo(k1, 1),...., w(Ky, 1),..., Vo(Ki,
n-1).
4. Compute dy(k1)=Ya(k1, 0) A p2(0).
5. Encrypt ps(0) to obtain ys(ky, 0, 0), ya(Ky,1, 0),...., Ya(Ka, j, 0),..., ya(ks, 2*™-1, 0).
6. Compute dx(K1, j)= ya(k1, j, 0) A ps(0), for j=1...2".

Step 2

Guess ¢ (ky).

Compute a(k, €)= (do+ cy(k1)) mod 2.

Compute T[a (k, €)]= d1(ky) A (do+ c1(ke))>>n.

Find jy, t=1...2%", such thet da(ky, j1)>>3n=T[a (K, C)].

Use da(K1, j)=(c2(Ka, jO)+ch(ki))>>n A T[a(k, c)] to determine c2(Ka, ji), where t=1....2%".
Find ry, t=1...2°", such that ca(ke, 11)>>3n=T[a(k, ©)], rd {ji,...,] Jan }.

Use co(ky, 1)=(b2(k1, k)+cu(ky))>>nA T[a(k, ¢)] to determine bp(ky, 1t).

Find by, t=1...2" such that by(ky, by)>>3n=T[a(k, )], bd { r1,...,r22n}.

Guess a (k).

10 Find b such that a (k, ¢)=(b+ay(ky)) (mod 2").
11. Compute a(k1, b)=(ay(k1)+b)>>n A T[a (K, 0)].

© OoN OO rwWDNE

Step 3 (Redorationof T)
1. Use a(ks, b)=( b + a(ki, ket 27"+ r, >23”))>>n A T[b3i + a(ki, kot j 22"+ r, 25"
(mod 2M],i=1...2", to daermlneT[O] T[2n -1.

2. Compute the first L = Dyake of dlements of the output sequence 7', z°,... 2°. If 7= a,
2= 2,...2 = 7, then we have found the correct initid gate of the cwptowstem, otherwise
return to step 2.

Let us esimate the complexity of this attack.



Firg note that in step 1 we compute 2" plaintexts and in step 2 the average of guessed dements is
estimated 2*" 2*'=22". Therefore, the complexity of the method is estimated Ty»2*"+28",

We stress that the complexity of the brute force attack is equal to Ty=21"24")*
For n=8 used in practice the complexities are Tr» 102 and Ty » 3207,

Now we dexcribe another atack on WAKE. The complexity of this dtack is smdler then the
complexity of the previous atack but the number of used plantextsis larger.
The method aso condsts of three steps.

The second attack

Step 1
Choosekj, k. (For example, k;=0, ko=0)

1. Encryptpi(ka) to obtain ya(ka).

2. Determine cb= pa(ka) A y1(ka).

3. Enaryptpa(ka), po(ko+22"),... pa(katr2"),... pa(ka+(2-1)2°"), pa(ko+2®"), pa(kat 22" +2°7),...,
Po(ko+ 22" +r2%"), ... Dokt 2" +(22-1)2%"),... pa(ko 22 +23N), ... po(ko+j 22 +1r23") . pa(kot
j22"+(2-1)2%),... pa(kaH(2-1)22+2°Y), ... po(ko+(2'-1)22"+r2°"), ... pa(ke+(27- 1) 22" +(2-
1)2%") to obtain yo(ky, ko+j22"+r2°") fordl j,d Z o+ (Wehave encrypted 2" of words)

Compute di(K1)=ya(k1, ko) A pa(ks).

Encrypt ps(0), p3(d),...,ps(0),...,p(2* 1) to obtan ys(ki, ko+j2°"+r2®" 0), ya(ki,

ko] 22"+ 22", 1)....., ya(ke, Ko#j224+r23" 1), ya(ke, ko] 22" +r22", 22D fordl j, i Z 0
2

6. Compute da(ky, kot+j 22" +r23M=y3(ky, ko+j22+r2%" 0) A ps(0) fordl j, i Z_

7. Encrypt ps0) to obtain ya(ky, ko+j2>"+r2%" 0, 0), ya(ka, k2+j>22”+r>23“1 0) . Va(ka,
ke+j 22" +r2%",j, 0),..., ya(ka, kotj2°"+r2>", 201, 0) fordl j, 1 Z 0
2

8. Compute da(k1, ko+j22"+r23", t)= ya(k1, ko+j 2" +r2°" t, 0) A pa(0), fordl j,r,fl Z 0
2

oA

Step 2

Guess ¢ (ky).

Compute a( k, €)= (do+ c1(k1)) mod 2.

Compute T[a (k, €)]= d1(ky) A (do+ c1(ke))>>n.

Find j;, 1t t=1...2", such that da(ka, ko+j22"+r23")>>3n=T[a (K, c)].
Use do(ki, kotji22"+r23N)=(Co(k, kotjt22"+r23M+di(ky))>>n A Tla(k, ¢)] to determine
Co(Ky, ko+je22"+12%"), where t=1...2",

Find j, , . such that ok, ket j, 2%r, 22>>30=T[aGk, )], J, T{ s i}, 1 14

k

agrwWNE
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, rzn}. (By propogition 3 and proposition 4 jtk T exig.)
7. Use coky, kot >22”+rtk 2°M=(b(k1, k2+jtk>22“+rtk>23”)+cl(k1))>>n A Tak, ¢] to
determine bu(Ks, ko j,, 22+ ro, 2%,
8. Andbls s=1...2" suchthat da(ky, ko+ e, >22”+rtk 22" bl)>>3n=T[a(k, C)].



9. Use dh(k, ketj, >22"+rtk 2" blg=(ca(ky, kot jtk>22”+rtk>23", bld+da(ky, kot jtk>22"+
i, 23M)>>n A T[a (k, ¢)] to determine ca(ki, ko+ jt, >22”+rtk 2°", b1y, wheres=1...2%",

10. Find b2, i=1...2", such that &(ka, k2+jtk>22”+rtk>23”, b2)>>3n=T[a(k, ¢)], b2 { bla,...,
bl ..}

11 Use Go(ke, ketj, >22”+rtk>23”,b2i):(b3(k1, ko+ jtk>22”+rtk 25" b2)+ cyky, kot jtk>22”+
ro, 23M)>>n A Tla (k, ©)] to determine bs(ks, ko+ i, >22”+rtk 22" b2), wherei=1...2*",

12. Aind b3;, i=1...2", such that b(ki, k2+jtk>22”+rtk>23”, b3)>>3n=T[a(k, )], b3l { b2y,...,
b2 5}

13.Use ba(ky, ketj, 21, 2Mb3)=(ae(ke, kot j, 221 27, b3)+ bp(ky, kot j, 2™
r, 23M)>>n A T[a (k, ¢)] to determine as(ki, ko+ jt, >22”+rtk 2°", b3), wherei=1...2".

14. Find b4 such thet as(k, ka+ ], 22"+ f, 2", b4)>>3n=T[a(k, O], b4l { b3y,..., b3 }.

15. Use as(ky, kot jtk>22”+ rtk>23”,b4)=( bd+ aks, ket i, 22+ rtk>23”))>>n A Tla(k, c)] to
determine ap(ky, ket j, 22+ ro, 2%,

Step 3 (Redtoration of T)
1. Use a(ki, lo+ jtk>22”+rtk 2" b3)=(b3 + a(ki, k+ i, 2%+ , 2°M)>>n A T[b3 + a(ky,

Ko+ Jt, 220+ r 2°") (mod 2V],i=1...2", to determine T[Q],..., T[2"-1].

2. Compute the first L = Dyake of elements of the output sequence Z,2,..2.1f2=3z,
2= 2,..2 = 1, then we have found the correct initid dae of the cryptosysem, otherwise
return to step 2.

Let us estimate the complexity of the method. Note that in step 1 we compute 2°" plaintexts and in
step 2 the average of guessed dementsis esimated 2*".  Therefore, the complexity of the method is
estimated Ty,»2*"+2°". For n=8 used in WAKE the complexitiesare T,» 104 and Ty»340°%.

5 Conclusion

We have presented two chosen plaintext atacks on the WAKE dream cipher. The complexity of fist
atack is 102 and the second attack is 10 but the complexity of the brute force attack is 3407,

Our results are intringc to the design principles of WAKE and are independent of the key
scheduling. We bdlieve improvements to these dtack are possble.  Although the atacks are by far
not practicd, it gives new intringc ingght into the agorithm.
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