Optimal security proofs for PSS and other signature schemes

Jean-Sébastien Coron
Gemplus Card International
34 rue Guynemer
Issy-les-Moulineaux, F-92447, France

jean-sebastien.coron@gemplus.com

Abstract. The Probabilistic Signature Scheme (PSS) designed by Bellare and Rogaway is a
signature scheme provably secure against chosen message attacks in the random oracle model,
with a security level equivalent to RSA. In this paper, we derive a new security proof for PSS
in which a much shorter random salt is used to achieve the same security level, namely we
show that log, iy bits suffice, where g4y is the number of signature queries made by the
attacker. When PSS is used with message recovery, a better bandwidth is obtained because
longer messages can now be recovered. Moreover, we show that this size is optimal: if less than
log, gsig bits of random salt are used, PSS is still provably secure but no security proof can be
tight. This result is based on a new technique which shows that other signature schemes such
as the Full Domain Hash scheme and Gennaro-Halevi-Rabin’s scheme have optimal security
proofs.

Key-words: Probabilistic Signature Scheme, provable security, random oracle model.

1 Introduction

Since the invention of public key cryptography in the seminal Diffie-Hellman paper [8],
significant research endeavors were devoted to the design of practical and provably secure
schemes. A proof of security is usually a computational reduction from solving a well estab-
lished problem to breaking the cryptosystem. Well established problems of cryptographic
relevance include factoring large integers, computing discrete logarithms in prime order
groups, or extracting roots modulo a composite integer.

For digital signature schemes, the strongest security notion was defined by Goldwasser,
Micali and Rivest in [12], as existential unforgeability under an adaptive chosen message
attack. This notion captures the property that an attacker cannot produce a valid signature,
even after obtaining the signature of (polynomially many) messages of his choice.

Goldwasser, Micali and Rivest proposed in [12] a signature scheme based on signature
trees which provably meets this definition. The efficiency of the scheme was later improved
by Dwork and Naor [9], and Cramer and Damgard [6]. A significant drawback of those
signature schemes is that the signature of a message depends on previously signed messages:
the signer must thus store information relative to the signatures he generates as time goes
by. Gennaro, Halevi and Rabin presented in [11] a new hash-and-sign scheme provably secure
against adaptive chosen message attacks which is both state-free and efficient. Its security
is based on the strong-RSA assumption. Cramer and Shoup presented in [7] a signature
scheme provably secure against adaptive chosen message attacks, which is also state-free,
efficient, and based on the strong-RSA assumption.

The random oracle model, introduced by Bellare and Rogaway in [1], is a theoretical

framework allowing to prove the security of hash-and-sign signature schemes. In this model,
the hash function is seen as an oracle which outputs a random value for each new query.

Bellare and Rogaway defined in [2] the Full Domain Hash (FDH) signature scheme, which
is provably secure in the random oracle model assuming that inverting RSA is hard. [2] also
introduced the Probabilistic Signature Scheme (PSS), which offers better security guarantees
than FDH. Similarly, Pointcheval and Stern [18] proved the security of discrete-log based
signature schemes in the random oracle model (see also [15] for a concrete treatment).
However, security proofs in the random oracle are not real proofs, since the random oracle is
replaced by a well defined hash function in practice; actually, Canetti, Goldreich and Halevi
[4] showed that a security proof in the random oracle model does not necessarily imply that
a scheme is secure in the real world.

For practical applications of provably secure schemes, the tightness of the security reduc-
tion must be taken into account. A security reduction is tight when breaking the signature
scheme leads to solving the well established problem with probability close to one. In this
case, the signature scheme is almost as secure as the well established problem. On the
contrary, if the above probability is too small, the guarantee on the signature scheme will
be weak; in which case larger security parameters must be used, thereby decreasing the
efficiency of the scheme.

The security reduction of [2] for Full Domain Hash bounds the probability ¢ of breaking
FDH in time ¢ by (qhash + gsig) - € where €’ is the probability of inverting RSA in time ¢’
close to ¢ and where gpqsp, and gs;y are the number of hash queries and signature queries
performed by the forger. This was later improved in [5] to € = g4 - €', which is a significant
improvement since in practice ¢y;4 happens to be much smaller than gqs,. However, FDH’s
security reduction is still not tight, and FDH is still not as secure as inverting RSA.

On the contrary, PSS is almost as secure as inverting RSA (¢ ~ ¢’). Additionally, for
PSS to have a tight security proof in [2], the random salt used to generate the signature
must be of length at least ko >~ 2 - logy qrash + 10gs 1/€’, where gpqsp is the number of hash
queries requested by the attacker and ¢ the probability of inverting RSA within a given
time bound. Taking gpasp, = 2% and ¢ = 2790 as in [2], we obtain a random salt of size
ko = 180 bits. In this paper, we show that PSS has actually a tight security proof for a
random salt as short as log, gs;4 bits, where g,;, is the number of signature queries made by
the attacker. For example, for an application in which at most one billion signatures will be
generated, ky = 30 bits of random salt are actually sufficient to guarantee the same level of
security as RSA, and taking a longer salt does not increase the security level. When PSS
is used with message recovery, we obtain a better bandwidth because a larger message can
now be recovered when verifying the signature.

Moreover, we show that this size is optimal: if less than log, g, bits of random salt
are used, PSS is still provably secure, but PSS cannot have exactly the same security level
as RSA. First, using a new technique, we derive an upper bound for the security of FDH,
which shows that the security proof in [5] with € ~ ¢4, - €' is optimal. In other words, it
is not possible to further improve the security proof of FDH in order to obtain a security
level equivalent to RSA. This answers the open question raised by Bellare and Rogaway
in [2], about the existence of a better security proof for FDH: as opposed to PSS, FDH
cannot be proven as secure as inverting RSA. The technique also applies to other signature
schemes such as Gennaro-Halevi-Rabin’s scheme [11] and Paillier’s signature scheme [16].
To our knowledge, this is the first result concerning optimal security proofs. Then, using the
upper bound for the security of FDH, we show that our size ky for the random salt in PSS
is optimal: if less than log, gsis bits are used, no security proof for PSS can be tight.

2 Definitions

In this section we briefly present some notations and definitions used throughout the paper.
We start by recalling the definition of a signature scheme.

Definition 1 (signature scheme). A signature scheme (Gen,Sign, Verify) is defined as
follows:

- The key generation algorithm Gen is a probabilistic algorithm which given 1%, outputs
a pair of matching public and private keys, (pk, sk).

- The signing algorithm Sign takes the message M to be signed, the public key pk and
the private key sk, and returns a signature x = Signpk,sk(M). The signing algorithm may
be probabilistic.

- The verification algorithm Verify takes a message M, a candidate signature ' and pk.
It returns a bit Verifypk(M, z'), equal to one if the signature is accepted, and zero otherwise.
We require that if x < Sign, (M), then Verify,, (M,z) = 1.

In the previously introduced existential unforgeability under an adaptive chosen message
attack scenario, the forger can dynamically obtain signatures of messages of his choice and
attempts to output a valid forgery. A valid forgery is a message/signature pair (M, z) such
that Verify,,(M,z) = 1 whereas the signature of M was never requested by the forger.

A significant line of research for proving the security of signature schemes is the previ-
ously introduced random oracle model, where resistance against adaptive chosen message
attacks is defined as follows [1]:

Definition 2. A forger F is said to (t,qnash, 9sig, €)-break the signature scheme (Gen, Sign,
Verify) if after at most gnasn(k) queries to the hash oracle, qsiq(k) signatures queries and
t(k) processing time, it outputs a valid forgery with probability at least e(k) for all k € N.

and quite naturally:

Definition 3. A signature scheme (Gen, Sign, Verify) is (f,qsig, Qhash, €)-secure if there
is no forger who (t,qnash, sig, €)-breaks the scheme.

The RSA cryptosystem, invented by Rivest, Shamir and Adleman [19], is the most widely
used cryptosystem today:

Definition 4 (The RSA cryptosystem). The RSA cryptosystem is a family of trapdoor
permutations, specified by:

- The RSA generator RSA, which on input 1%, randomly selects two distinct k/2-bit
primes p and q and computes the modulus N = p - q. It randomly picks an encryption
exponent e € Z;‘)(N) and computes the corresponding decryption exponent d such that e-d =
1 mod ¢(N). The generator returns (N,e,d).

- The encryption function f : Z} — Z% defined by f(z) = 2° mod N.

- The decryption function f~': Z% — Z% defined by f~'(y) = y? mod N.

FDH was the first practical and provably secure signature scheme based on RSA. Tt
is defined as follows: the key generation algorithm, on input 1¥, runs RS.A(1*) to obtain
(N,e,d). It outputs (pk, sk), where the public key pk is (IV,e) and the private key sk is
(N,d). The signing and verifying algorithms use a hash function H : {0,1}* — Z} which
maps bit strings of arbitrary length to the set of invertible integers modulo N.

SignFDHy ;(M) VerifyFDHy (M,)
y < H(M) y < z¢ mod N
return y¢ mod N if y = H(M) then return 1 else return 0.

FDH is provably secure in the random oracle model, assuming that inverting RSA is
hard. An inverting algorithm T for RSA gets as input (N, e,y) and tries to find y% mod N.
Its success probability is the probability to output y¢ mod N when (N, e, d) are obtained by
running RSA(1¥) and y is set to ¢ mod N for some z chosen at random in Z%.

Definition 5. An inverting algorithm T is said to (t,e)-break RSA if after at most t(k)
processing time its success probability is at least e(k) for all k € N.

Definition 6. RSA is said to be (t,€)-secure if there is no inverter which (t,e)-breaks RSA.

The following theorem [5] proves the security of FDH in the random oracle model. We
include the proof in appendix A for further reference in the paper.

Theorem 1. Assuming that RSA is (tr,er)-secure, FDH is (tr, Qnash, Qsig, EF)-Secure,
with:

tI — tF + (Qhash + 4sig + 1)) O(ks) (1)
1 QSig+1
o= L (1 -) @)
Qsig Qsig + 1

The same method can be used to obtain an improved security proof for Gennaro-Halevi-
Rabin’s signature scheme [11] in the random oracle model and for Paillier’s signature scheme
[16]. From a forger which outputs a forgery with probability er, the reduction succeeds in
solving the hard problem with probability roughly € /gsig, in approximately the same time
bound.

For example, if we assume that, for a given security parameter k, the probability of
inverting RSA is less than 2790 for a given time bound ¢, and if the forger is allowed to
make at most 260 hash queries and 230 signature queries, then the probability of breaking
FDH is less than 2728 for a time bound close to t.

The security reduction of FDH is not tight: the probability er of breaking FDH is
smaller than roughly g, - €7 where 7 is the probability of inverting RSA, whereas the
security reduction of PSS is tight: the probability of breaking PSS is almost the same as the
probability of inverting RSA (ep ~ ¢y).

3 New security proof for PSS

Several standards include PSS, among these are IEEE P1363a [13], a revision of ISO/IEC
9796-2, and the upcoming PKCS#1 v2.1 [17]. In this section we obtain a better security
proof for PSS, in which a shorter random salt is used to generate the signature. We consider
first a variant of PSS for which the security proof is simpler.

3.1 A variant of PSS

In this section we describe a variant of PSS, which we call PFDH, for Probabilistic Full
Domain Hash. The scheme is similar to Full Domain Hash except that a random salt of kg
bits is concatenated to the message M before hashing it. The difference with PSS is that
the random salt is not recovered when verifying the signature; instead the random salt is
transmitted separately. As FDH, the scheme uses a hash function H : {0,1}* — Z},.

SignPFDH(M) : VerifyPFDH(M, s,) :
r& {0, 1}ko y < s mod N
y < H(M||r) ify = H(M||r) then return 1
return (y¢ mod N,r) else return 0

The following theorem proves the security of PFDH in the random oracle model, assum-
ing that inverting RSA is hard. It shows that PFDH has a tight security proof for a random
salt of length ko = log, ¢sig bits.

Theorem 2. Suppose that RSA is (t',€')-secure. Then the signature scheme PFDH[kg] is
(t, Qhash, Gsig, €)-secure, where:

t=1t— (Qhash + QSig) : O(k3) (3)
e=c (146 gy 27) (4)

Proof. Let F be a forger which (, ¢sig, Ghash, €)-breaks PFDH. We construct an inverter I
which (¢, ')-breaks RSA. The inverter receives as input (V, e,) and must output ¢ mod N.
We assume that the forger never repeats a hash query. However, the forger may repeat a
signature query, in order to obtain the signature of M with distinct integers r. The inverter
7 maintains a counter ¢, initially set to zero.

When a message M appears for the first time in a hash query or a signature query, the
inverter increments the counter 7 and sets M; <— M. Then, the inverter generates a list L;
of gsg random integers in {0, 1}’“0.

When the forger makes a hash query for M;||r, we distinguish two cases. If r belongs
to the list L;, the inverter generates a random z € Z} and returns H(M;||r) = z° mod N.
Otherwise, the inverter generates a random = € Z%; and returns -z mod N. Consequently,
for each message M;, the list L; contains the integers r € {0,1}¥ such that the inverter
knows the signature z corresponding to M;||r.

When the forger makes a signature query for M;, the inverter picks a random r in L; and
discards it from the list. Since the list contains initially ¢,;, integers and there are at most
gsig Signature queries, this is always possible. If there was already a hash query for M;||r, we
have H(M;||r) = z° mod N and the inverter returns the signature z. Otherwise the inverter
generates a random z € Z%},, sets H(M;||r) = ¢ mod N and returns the signature z.

When the forger outputs a forgery (M, s,r), we assume that it has already made a hash
query for M, so M = M; for a given i. Otherwise, the inverter goes ahead and makes the hash
query for M||r. Then if r does not belong to the list L;, we have H(M;||r) =7 - z° mod N.
From s = H(M;||r)¢ = n% .z mod N, we obtain n¢ = s/z mod N and the inverter succeeds
in outputting 7% mod N.

Since the forger has not made any signature query for the message M; in the forgery
(M;, s,r), the forger has no information about the gs;4 random integers in the list L;. There-
fore, the probability that r does not belong to L; is (1 —27%0)%sis_If the size kg of the random
salt is greater than logy gsi4, we obtain if g5, > 2:

(1-270)"" > (1 1!)qsm

qsig

Y

1
4

Since the forger outputs a forgery with probability €, the success probability &’ of the inverter
is then at least £/4, which shows that for kg > log, ¢sig the probability of breaking PFDH
is almost the same as the probability of inverting RSA.

| M LT | M LT]
ﬁ T ﬁ

[0 | W L]l G | 0 | W L] MO |
— -

Fig. 1. PSS (left) and PSS-R (right)

For the general case, i.e. if we do not assume kg > log, gsig, We generate fewer than g,
random integers in the list L;, so that the salt r in the forgery (M;, s, r) belongs to L; with
lower probability. More precisely, starting from an empty list L;, the inverter generates with
probability 8 a random r < {0, 1}’“0, adds it to L;, and starts again until the list L; contains
gsig elements. Otherwise (so with probability 1 —) the inverter stops adding integers to the
list. The number a; of integers in L; is then a random variable following a geometric law of
parameter 3:

. _ - B9 if g 51
Prla; = j] = {(ﬁlqsig o)F if; i Zsiz R

The inverter answers a signature query for M; if the corresponding list L; contains
one more integer, which happens with probability 8 (otherwise the inverter must abort).
Consequently, the inverter answers all the signature queries with probability greater than
B%is. Note that if § = 1, the setting boils down to the previous case: all the lists L; contain
exactly g4 integers, and the inverter answers all the signature queries with probability one.

The probability that r in the forgery (M;,s,r) does not belong to the list L; is then
(1 —27k0)J, when the length a; of L; is equal to j. The probability that r does not belong
to L; is then:

Qsig

FB =Y Prla =g (127’ (6
§=0

Since the forger outputs a forgery with probability €, the success probability of the inverter
is at least € - %5 - f(3). We select a value of 8 which maximizes this success probability; in
appendix B we show that for any (g4, ko), there exists Sy such that:

1

0 - f(Bo) = 14 6-qyg- 250 (7)

which gives (4). The running time of Z is the running time of F plus the time necessary to
compute the integers ¢ mod N, which gives (3).

3.2 Application to PSS

The signature scheme PSS is parameterized by the integers ky and k;. The key generation is
identical to FDH. The signing and verifying algorithms use two hash function H : {0,1}* —
{0,1}* and G : {0,1}*1 — {0,1}**1~1 Let G| be the function which on input w €
{0,1}*1 returns the first ko bits of G(w), whereas G is the function returning the remaining
k — ko — k1 — 1 bits of G(w). The scheme is illustrated in figure 1.

SignPSS(M) : VerifyPSS(M,) :
r& {0, 1}ko y < z¢ mod N
w <+ H(M||r) Break up y as b||w||r*||y
™ Gi(w) DT Let 7+ r* @ G1(w)
y < Ol|w||r*||G2(w) if HM||r) =w and Ga(w) =y and b=1
return y¢ mod N then return 1 else return 0

The following theorem [2] proves the security of PSS in the random oracle model:

Theorem 3. Assuming that RSA is (t',€')-secure, the signature scheme PSS[ko, k1] is (i,
sig; Ghash, €)-secure, where :

t=1t— (q}zash + Gsig + 1) ~ ko - O(k?’)
€= EI +3- (QSig + Qhash)2 ' (2_k0 + 2_k1)

Theorem 3 shows that for PSS to be as secure as RSA (i.e. €’ ~ ¢), it must be the case
that (gsig + qhasn)? - (2*’“0 + 2*’“1) < €', which gives kg > ky,in and k1 > ki, where:

1
Emin = 2 - 1089 (qhash + QSig) + log, ; (8)

Taking gpesn = 2%, Qsig = 230 and ¢/ = 2799 as in [2], we obtain that ky and k; must be
greater than k,,;, = 180 bits.

The following theorem shows that PSS can be proven as secure as RSA for a much
shorter random salt, namely ko = log, g,;¢ bits, which for gy = 230 gives ko = 30 bits. The
minimum value for ki remains unchanged. The proof is very similar to the proof of theorem
2 for PFDH and is given in appendix C.

Theorem 4. Assuming that RSA is (t',€')-secure, the signature scheme PSS[ko, k1] is (t,
sigs Ghash, €)-Secure, where :

t= tl - (Qhash, + Q.sz'g)) kl ' O(k3) (9)
£ = 6’ . (1 +6- qsig * 2_k0) +2- (Qhash + QSig)2 * Z_kl (10)

3.3 Discussion

In figure 2 we plot log, £’ /¢ as a function of the size kg of the salt, which depicts the relative
security of PSS compared to RSA, for ¢4y = 230 and ki > kmpin. For kg = 0, we reach
the security level of FDH, where approximately logy g, bits of security are lost compared
to RSA. For ky comprised between zero and log, gsig, Wwe gain one bit of security when kg
increases by one bit. And for ky greater than log, ¢sig, the security level of PSS is almost
the same as inverting RSA. This shows that PSS has a tight security proof as soon as the
salt size reaches log, gsig, and using larger salts does not further improve security. For the
signer, ¢, represents the maximal number of signatures which can be generated for a given
public-key. For example, for an application in which at most one billion signatures will be
generated, kg = 30 bits of random salt are actually sufficient to guarantee the same level of
security as RSA, and taking a larger salt does not increase the security level.

More precisely, taking ko = logy qsig and ki = Ky, Where ki, is given by (8), we obtain
that the probability of breaking PSS in time less than ¢, is less than € = 9 - &', where ¢’ is
the probability of inverting RSA in time close to t. Therefore with those parameters PSS

5
| Security gla,p betweenI PSS and R|SA —_—

-10

log,e'/e -15 -]

220 -

-30

-35 | | | | |
0 10 20 30 40 50 60

Salt size ko in bits

Fig. 2. Security gap between PSS and RSA: log, £'/¢ as a function of the salt size ko for gs;5 = 23° signature
queries.

is almost as secure as inverting RSA'. Taking gpasn = 2°°, Osig = 230 and ¢/ = 2790 for a
1024-bit modulus as in [2], we can take ki = ki, = 180 bits and kg = logy ¢sig = 30 bits.

PSS-R is a variant of PSS which provides message recovery; the scheme is illustrated in
figure 1. The goal is to save on the bandwidth: instead of transmitting the message separately,
the message is recovered when verifying the signature.The security proof for PSS-R is almost
identical to the security proof of PSS, and PSS-R achieves the same security level as PSS.
Consequently, using the same parameters as for PSS with a 1024-bits RSA modulus, 813
bits of message can now be recovered when verifying the signature (instead of 663 bits with
the previous security proof).

4 Optimal security proof for FDH

In section 2 we have seen that the security proof of theorem 1 for FDH is still not tight: the
probability e of breaking FDH is smaller than roughly g, - €1 where £ is the probability
of inverting RSA, whereas the security reduction of PSS is tight: the probability of breaking
PSS is almost the same as the probability of inverting RSA (ep =~ 7). An interesting
question is whether it is possible to obtain a better security bound for FDH. In particular,
is it possible to show that FDH is as secure as inverting RSA 7

In this section we show that the security proof of theorem 1 for FDH is optimal, i.e. there
is no better reduction from inverting RSA to breaking FDH, and one cannot avoid loosing
the g4 factor in the probability bound. A possible direction would be to demonstrate an
attack against FDH which would not apply to inverting RSA. More precisely, if we could
prove that the best possible attack against FDH is g4, times faster than the best possible
attack against RSA, this would show that FDH is indeed less secure than RSA and that
the previous security proof for FDH is optimal. But actually we don’t know any attack on
FDH, faster than factoring N.

! The factor 9 is not relevant here, because it represents less than 4 bits of security. To obtain &' ~ ¢, we
can take ko = log, gsig + 8 and k1 = kmin + 8, which gives &/ = 1.04 - .

Instead, in order to show that there is no better reduction from inverting RSA to breaking
FDH, we will use a similar approach as Boneh and Venkatesan in [3] for disproving the
equivalence between inverting low-exponent RSA and factoring. They show that any efficient
algebraic reduction from factoring to inverting low-exponent RSA can be converted into an
efficient factoring algorithm. Such reduction is an algorithm A which factors N using an
e-th root oracle for N. They show how to convert algorithm A into an algorithm B that
factors integers without using the e-th root oracle. Thus, unless factoring is easy, inverting
low-exponent RSA cannot be equivalent to factoring under algebraic reductions.

Similarly, we show that any better reduction from inverting RSA to breaking FDH can
be converted into an efficient RSA inverting algorithm. Such reduction is an algorithm R
which uses a forger as an oracle in order to invert RSA. We show how to convert R into an
algorithm Z which inverts RSA without using the oracle forger. Consequently, if inverting
RSA is hard, there is no such better reduction for FDH, and the reduction of theorem 1
must be optimal.

Our technique is the following. Recall that resistance against adaptive chosen message
attacks is considered, so the forger is allowed to make signature queries for messages of its
choice, which must be answered by the reduction R. Eventually the forger outputs a forgery,
and the reduction must invert RSA. Therefore we first ask the reduction to sign a message
M and receive its signature s, then we rewind the reduction to the state in which it was
before the signature query, and we send s as a forgery for M. This is a true forgery for the
reduction, because after the rewind there was no signature query for M, so eventually the
reduction inverts RSA. Consequently, we have constructed from R an algorithm Z which
inverts RSA without using any forger. Actually, this technique allows to simulate a forger
with respect to R, without being able to break FDH. However, the simulation is not perfect,
because it outputs a forgery only for messages which can be signed by the reduction, whereas
a real forger outputs the forgery of a message which the reduction may or may not be able
to sign.

We quantify the efficiency of the reduction by giving the probability that the reduction
inverts RSA using a forger that (¢tr, qhasn,gsig,€F)-breaks the signature scheme, within an
additional running time of ¢p:

Definition 7. We say that a reduction algorithm R (tgr, qhash, Gsig> €F» €R)-Teduces inverting
RSA to breaking FDH if upon input (N,e,y) and after running any forger that (tr, qhash,
sig,F)-breaks FDH, the reduction outputs y® mod N with probability greater than e, within
an additional running time of tg.

In the above definition, ¢g is the running time of the reduction algorithm only and
does not include the running time of the forger. Eventually, the time needed to invert
RSA is tp + tg, where tp is the running time of the forger. For example, the reduction
of theorem 1 for FDH (tg, gnash, gsig, €F, €r)-reduces inverting RSA to breaking FDH with
tR(k) = (Qh,ash + QSig) : O(k3) and eg = EF/(4 : QSig)-

The following theorem shows that from any such reduction R we can invert RSA with
probability greater than roughly er — €r/gsig, in roughly the same time bound. The term
€F/sig is due to the fact that our simulation of a forger is not perfect. This also corresponds
to the success probability of the reduction in theorem 1. This means that if the success
probability e of the reduction is greater than er/gs;4, we obtain an algorithm which inverts
RSA without using the forger. Therefore, if inverting RSA is hard, the success probability
of the reduction cannot be greater than roughly er/qsy, and the reduction of theorem 1
must be optimal.

10

Theorem 5. Let R be a reduction which (tg, Qnash, sig: R, EF)-reduces inverting RSA to
breaking FDH. R runs the forger only once. From R we can construct an algorithm which
(tr,er)-inverts RSA, with:

=2t (11)

exp(—l) Gsig !
eg=¢ep—¢€p ——= . [1 - 2L (12)
qsig 9hash

Proof. From R we build an algorithm Z which inverts RSA, without using a forger for FDH.
We receive as input (N, e,y) and our goal is to output y¢ mod N using R. We select gnash
distinct messages My, ..., M, of length O(k) and starts running R with (N, e, y).

? Ghash
First we ask R to hash the g5, messages Mi,..., My, . and obtain the hash values
hi,...,hg,,.,- We select a random integer 8 € [1,gnqsn] and a random sequence « of gs;4
integers in [1, gnasn] \ {6}, which we denote o = (a1, ..., ay,;,). We select a random integer
i € [1,¢sig] and define the sequence of ¢ integers o' = (a1, ...,;—1,3). Then we make the i
signature queries corresponding to o’ to R and receive from R the corresponding signatures,
the last one being the signature sg of Mg. For example, if o/ = (3,2), this corresponds to

making a signature query for Mj first, and then for Ms.

Then we rewind R to the state it was after the hash queries, and this time, we make
the g, signature queries corresponding to «. If R has answered all the signature queries,
then with probability e, we send (Mg, sg) as a forgery to R. This is a true forgery for R
because after the rewind of R, there was no signature query for Mg. Eventually R inverts
RSA and outputs y¢ mod N.

We denote by Q the set of sequences of signature queries which are correctly answered by
R after the hash queries, in time less than tg. If a sequence of signature queries is correctly
answered by R, then the same sequence without the last signature query is also correctly
answered, so for any (a,..., ;) € Q, we have (aq,...,a;_1) € Q. Let us denote by ans the
event a € Q, which corresponds to R answering all the signature queries after the rewind,
and by ans’ the event o/ € Q, which corresponds to R answering all the signature queries
before the rewind.

Let us consider a forger which makes the same hash queries, the same signature queries
corresponding to «, and outputs a forgery for Mg with probability e7. By definition, when
interacting with such a forger, R would output y¢ mod N with probability at least ez. After
the rewind, R sees exactly the same transcript as when interacting with this forger, except if
event ans is true and ans’ is false: in this case, the forger outputs a forgery with probability
er, whereas our simulation does not output a forgery. Consequently, when interacting with
our simulation of a forger, R outputs y% mod N with probability at least:

eg — €r - Pr[ans A —ans’] (13)
Lemma 1. Let Q be a set of sequences of at most n integers in [1,k], such that for any

sequence (o, ...,o;) € Q, we have (ai,...,aj_1) € Q. Then the following holds:

Pr [(al,...,an)eQ/\(oq,---aOéi—l,ﬁ)ﬁéQ]Sw

i[1,n]
((11 7"'7an7ﬂ)<_[1’k]n+1

Proof. The proof is given in appendix D.

Using lemma 1 with n = ¢4y and k = gpqsh, We obtain:

-1 o\ L
Pr[ans A —ans’] < exp(~1) (1 — sig) (14)
qsig 9hash

11

The term (1 — gsig/qnasn) in equation (14) is due to the fact that we select as,...,qq,,, in
[1, ghasn] \ {8} whereas in lemma 1 the integers are selected in [1, gnqsp]- From equations (13)
and (14) we obtain that Z succeeds with probability greater than e; given by (12). Because
of the rewind, the running time of Z is at most twice the running time of R, which gives

(11).

4.1 Discussion

The previous theorem shows that from any reduction R which inverts RSA with probability
er when interacting with a forger which outputs a forgery with probability e, we can invert
RSA with probability roughly e g —er/gsig, in roughly the same time bound, without using a
forger. For simplicity, we neglect here the factors exp(—1) and (1 — ¢sig/qnasn)- Moreover we
consider a forger which makes g,;4 signature queries, and with probability e = 1 outputs a
forgery?. We begin by providing an asymptotic analysis, and then we illustrate the theorem
with a concrete analysis, i.e. for a fixed size of the modulus.

Theorem 5 implies that from a polynomial time reduction R which succeeds with prob-
ability eg when interacting with this forger, we obtain a polynomial time RSA inverter
Z which succeed with probability e; = er — 1/¢sig, Without using the forger. If inverting
RSA is hard, the success probability €7 of the polynomial time inverter must be negligible.
Consequently, the success probability eg of the reduction must be less than 1/¢,;, + negl.
This shows that from a forger which outputs a forgery with probability one, a polynomial
time reduction cannot succeed with probability greater than 1/g¢y;, +negl. On the contrary,
a tight security reduction would invert RSA with probability close to one. Here we can-
not avoid the g4, factor in the security proof: the security level of FDH cannot be proven
equivalent to RSA.

For the concrete analysis, we need to assume a lower bound for the complexity of breaking
RSA for a given key size. The running time of the best factoring algorithm known (NFS
[14]) for factoring a modulus N is about

Tnrs(k) = exp(C - (log N)'/? - (loglog N)*/%)

where C' ~ 1.923. Therefore we might assume that RSA is (¢, €)-secure for any (¢, €) satisfying
t(k)/e(k) < Tnrs(k). For a 1024-bit modulus, we obtain that RSA is (¢, - 27%)-secure for
all t < 286 For example, the probability of inverting RSA in time 226 is less than 2760,

Using the previous forger, the reduction of theorem 1 outputs ¢ mod N with probability
about 1/¢s; = 22 in additional time (gpash+¢sig) O (k®). Taking ghesn = 20 and gy = 2%,
and assuming that the modular exponentiations corresponding to the term O(k®) are done
in unit time for a 1024-bit modulus, we get an additional running time of 2.

Let us consider another reduction R which, using the same forger, outputs y% mod N
with probability er in additional time . Theorem 5 shows that from R and without using
the forger, we can invert RSA in time ¢; = 2 - tg, with probability at least egp — 1/¢sig-
Conversely, if RSA is (t7,e5)-secure, the reduction R cannot invert RSA with probability
greater than 1/¢s, + e7. Assume that R is as efficient as the reduction of theorem 1, i.e.
its running time g is less than 240. This gives ¢; = 2*!, and since RSA is (24!,27%5)-secure
for a 1024-bit modulus, the probability that R outputs y% mod N using the previous forger
cannot be greater than 1/qy, + 274 ~ 2720, From a forger which outputs a forgery with
probability one, the reduction cannot invert RSA with probability greater than roughly

% Such forger can be constructed by first factoring the modulus N, then computing a forgery using the
factorisation of V.

12

1/4sig = 2720 if the running time of the reduction is less than 240, Again, this shows that
we cannot avoid the g4, factor in the security proof: the security proof of theorem 1 for
FDH is optimal and the security level of FDH cannot be proven equivalent to RSA.

5 Extension to any signature scheme with unique signature

Actually, our technique which consists in making a signature query for M, rewinding the
forger, then sending the signature of M as a forgery, stretches beyond FDH and can be
generalized and applied to any signature scheme. However, the technique works only for
signature schemes in which each message has a unique signature, because otherwise the
forger cannot be simulated. Namely if M has many possible signatures, our simulation
sends as a forgery for M a signature s that was received from R, whereas a real forger has
no information about s (since it has not queried M for signature to R) and can output
any signature s’ # s for M. For signature schemes with unique signature, our technique
shows that the reduction cannot succeed with probability greater than roughly er/gsig,
using a forger which outputs a forgery with probability ep. Signature schemes with unique
signature include FDH, Gennaro-Halevi-Rabin’s signature scheme and Paillier’s signature
scheme. Note that PSS is not a signature scheme with unique signature.

However, we have so far considered reductions running a forger only once. If the reduction
of theorem 1 for FDH runs the forger r times, its success probability will be roughly 7 -
€F/Qsig, and the total running time will be roughly 7 times the running time of the forger.
But there might be a better reduction which would yield a better time/probability trade-
off. For example, a reduction for FDH could succeed with probability almost e when
running a forger only twice. In this case, FDH would be almost as secure as inverting RSA.
Additionally, the reduction might rewind the forger with different inputs, as for proof-of-
knowledge based signature schemes [15, 18].

The following theorem shows that there is no better time/probability trade-off: for a
hash-and-sign signature scheme with unique signature, a reduction allowed to run or rewind
a forger at most r times cannot succeed with probability greater than roughly r - 7 /¢sig-
The definitions are in appendix E and the proof of the theorem is given in appendix F.

Theorem 6. Let R be a reduction which (tr, qhash, dsig, €F, €R)-Teduces solving a problem IT
to breaking a hash-and-sign signature scheme with unique signature. R is allowed to run or
rewind a forger at most r times. From R we can construct an algorithm which (t4,c4)-solves
II, with:

ta=(r+1)-tg (15)

exp(—1)-r gsio \
€A:8R—8F'7'(1——g) (16)
qsig Ghash

6 Security proofs for signature schemes in the standard model

The same technique can be applied for security reductions in the standard model, and we
obtain the same upper bound in 1/gs;, for signature schemes with unique signature. The
definitions of security against adaptive chosen message attacks are analogous in the standard
model and can be found in appendix G.

The following theorem is analogous to theorem 6. It proves that for any signature scheme
with unique signature, assuming the hardness of a given problem II, any security reduction
running or rewinding a forger at most r times cannot be tighter than roughly r - 7 /¢sig-

13

Namely a better reduction can be converted into an algorithm for solving I, in approxi-
mately the same time bound. The proof is similar to the proof of theorem 6 and is given in
appendix H

Theorem 7. Let R be a reduction which (tr,qsig,€F,ER)-reduces solving II to breaking a
signature scheme with unique signature. R can run or rewind the forger at most r times.
Assume that the size of the message space is at least 2¢. From R we can construct an
algorithm which (ta,ea)-solves II, with:

ta=(r+1)-tg (17)

~1)- N
5A:gR_gF.M.(1_qszg) (18)
qsig 2

Gennaro-Halevi-Rabin’s signature scheme has a tight (e ~ eg) security reduction in the
standard model, but the above theorem does not apply here because the reduction of [11]
requires that a message has many possible signatures. This is also the case for the Cramer-
Shoup signature scheme [7]. However, we show in appendix I that the above bound in 1/g;,
is reached for a variant of Gennaro-Halevi-Rabin’s scheme with unique signature, provably
secure in the standard model. The variant is provably secure for short messages only (say,
less than 40 bits). We do not know if there exists a practical signature scheme with unique
signature, provably secure in the standard model and reaching the above bound.

7 Optimal security proof for PSS

In section 3.2 we have seen that kg = log, qsi4 bits of random salt are sufficient for PSS to
have a security level equivalent to RSA, and taking a larger salt does not further improve
the security. An interesting question is that of knowing whether this size is optimal or not.
For k1, the output size of the hash function H, the minimum value k,,;, given by equation
(8) is clearly optimal, because an attacker making gpnqsp hash queries can find a collision
H(M]||0) = H(M'||0) with probability roughly (gxqsn)?-27%1 /2 and then forge the signature
of M' using the signature of M. However, there might be a better security proof for PSS
which would be tight for a shorter size ky of the random salt. Actually, if this size is equal
to zero, the scheme becomes with unique signature, and we know from section 5 that one
must loose log, gsi4 bits of security compared to the security of RSA. So it seems natural to
think that we need at least log, g4 bits of random to make PSS as secure as RSA, because
normally we should gain at most one bit of security for each added bit of random salt.

In this section, we show that this is indeed the case: if a shorter random salt is used,
the security of PSS cannot be proven equivalent to RSA. Our technique described in section
4 does not apply directly because PSS is not a signature scheme with unique signature.
However, we show in appendix J how to extend to PSS the previous upper bound for
FDH. More precisely, we show that from a reduction R which inverts RSA in time ig
with probability eg when running at most r times a forger which breaks PSS[kg, k1] with
probability r, one can invert RSA without using the forger, with probability e; = egp —r-
EF - 2k0+2/qsig, in time t; = (r + 1) - tg.

Theorem 8. Let R a reduction which (t, qnash, qsig, €F, ER)-reduces inverting RSA to break-
ing PSS[ko, k1], with gnash > 2 - gsig- The reduction can run or rewind the forger at most r
times. From R we can construct an inverting algorithm for RSA which (tr,er)-inverts RSA,

14

with:

tr=(r+1)-tg (19)
2k0+2

E] =€ER —T-EF -
qsig

Proof. The proof is given in appendix J.

7.1 Discussion

Let consider as in section 4.1 a forger for PSS[kg, k1] which makes g,;, signature queries and
outputs a forgery with probability ep = 1/2. Then, from a polynomial time reduction R
which succeeds with probability e when running once this forger, we obtain a polynomial
time inverter which succeeds with probability e; = e —2ko+1/ sig» Without using the forger.
If inverting RSA is hard, the success probability ¢; of the polynomial time inverter must
be negligible, and therefore the success probability er of the reduction must be less than
2kot1/ ¢sig +negl. Consequently, in order to have a tight security reduction (eg ~ eg), we
must have kg ~ log, gsig.- The reduction of theorem 3.2 is consequently optimal.

Let us illustrate the theorem with concrete values. Using the previous forger, the reduc-
tion for PSS of section 3.2 inverts RSA with probability (we assume that k1 > kpip):

N 146 - gsig - 27F0

€R

Taking ko = log, gsig, We obtain that the reduction inverts RSA with probability at least
1/14. Assuming as in section 4.1 that the modular exponentiations are performed in unit
time for a 1024-bit modulus, the running time of the reduction is less than 2°°.

Let us consider another reduction R from inverting RSA to braking PSS[kg, k1], with the
same running time 250, and which succeeds with probability at least ez using the previous
forger. From theorem 8 we can construct an algorithm which inverts RSA in time 2°! with
probability e = eg — 2k0+1/qsig. Assuming as in section 4.1 that RSA is (25!, 273%)-secure,
the success probability of the reduction cannot be greater than 2ko+1 /Qsig + 2735, Conse-
quently, to obtain the same success probability as the reduction of section 3.2, we must have
2k0+1/QSig + 2735 > 1/14, which gives ko > log, dsig — 9. With ko = logy gsig, the reduction
of section 3.2 is consequently optimal, up to a constant factor. To summarize, if the size kg
of the random salt is smaller than log, gsi4, PSS is still provably secure as shown in section
3.2, but the security level of PSS can not be proven equivalent to RSA.

8 Conclusion

We have described a new technique for analyzing the security proofs of signature schemes.
The technique is both general and very simple and allows to derive upper bounds for security
reductions using a forger as a black box, both in the random oracle model and in the standard
model, for signature schemes with unique signature. We have also obtained a new criterion
for a security reduction to be optimal, which may be of independent interest: we say that
a security reduction is optimal if from a better reduction one can solve a difficult problem,
such as inverting RSA. Our technique enables to show that the Full Domain Hash scheme,
Gennaro-Halevi-Rabin’s scheme and Paillier’s signature scheme have an optimal security
reduction in that sense. In other words, we have a matching lower and upper bound for the
security reduction of those signature schemes: one cannot do better than losing a factor of
gsig in the security reduction.

15

Moreover, we have described a better security proof for PSS, in which a much shorter

random salt is sufficient to achieve the same security level. This is of practical interest,
since when PSS is used with message recovery, a better bandwidth is obtained because
larger messages can be embedded inside the signature. Eventually, we have shown that this
security proof for PSS is optimal: if a smaller random salt is used, PSS remains provably
secure, but it cannot have the same level of security as RSA.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols.
Proceedings of the First Annual Conference on Computer and Commmunications Security, ACM, 1993.

M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign with RSA and Rabin.
Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-Verlag, 1996, pp. 399-416.

D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring. Proceedings of Euro-
crypt’ 98, LNCS vol. 1403, Springer-Verlag, 1998, pp. 59-71.

. R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited, STOC’ 98, ACM,

1998.

J.S. Coron, On the exact security of Full Domain Hash, Proceedings of Crypto’2000, LNCS vol. 1880,
Springer-Verlag, 2000, pp. 229-235.

R. Cramer and I. Damgérd, New generation of secure and practical RSA-based signatures, Proceedings
of Crypto’96, LNCS vol. 1109, Springer-Verlag, 1996, pp. 173-185.

R. Cramer and V. Shoup, Signature schemes based on the Strong RSA Assumption, May 9, 2000,
revision of the extended abstract in Proc. 6th ACM Conf. on Computer and Communications Security,
1999; To appear, ACM Transactions on Information and System Security (ACM TISSEC). Available at
http://www.shoup.net/

W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory,
1T-22, 6, pp. 644-654, 1976.

C. Dwork and M. Naor, An efficient existentially unforgeable signature scheme and its applications, In
J. of Cryptology, 11 (3), Summer 1998, pp. 187-208.

FIPS 186, Digital signature standard, Federal Information Processing Standards Publication 186, U.S.
Department of Commerce/NIST, 1994.

R. Gennaro, S. Halevi and T. Rabin, Secure hash-and-sign signatures without the random oracle, pro-
ceedings of Eurocrypt '99, LNCS vol. 1592, Springer-Verlag, 1999, pp. 123-139.

S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against adaptive chosen-message
attacks, SIAM Journal of computing, 17(2), pp. 281-308, April 1988.

IEEE P1363a, Standard Specifications For Public Key Cryptography: Additional Techniques, available
at http://www.manta.ieee.org/groups/1363

A. Lenstra and H. Lenstra (eds.), The development of the number field sieve, Lecture Notes in Mathe-
matics, vol 1554, Springer-Verlag, 1993.

K. Ohta and T. Okamoto, On concrete security treatment of signatures derived from identification.
Prooceedings of Crypto ’98, Lecture Notes in Computer Science vol. 1462, Springer-Verlag, 1998, pp.
354-369.

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes. Proceedings of Eu-
rocrypt’99, LNCS vol. 1592, Springer-Verlag, 1999, pp. 223-238.

PKCS #1 v2.1, RSA Cryptography Standard (draft), available at http://www.rsasecurity.com
/rsalabs/pkcs.

D. Pointcheval and J. Stern, Security proofs for signature schemes. Proceedings of Eurocrypt’96, LNCS
vol. 1070, Springer-Verlag, pp. 387-398.

R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryp-
tosystems, CACM 21, 1978.

16
A Proof of theorem 1

We construct an algorithm R which inverts RSA using a forger F. The reduction R will
answer by itself the hash queries and signature queries of F. We assume that when the
forger makes a signature query he has already made the corresponding hash query. If not,
the reduction goes ahead and makes the corresponding hash query. Similarly, we assume
that the message M which signature is forged by the forger, has already been queried for
hashing. Otherwise the reduction makes the corresponding hash query and proceeds.

Algorithm for R:

Input: (N, e,y) and (ghash, gsig), Where (N, e) RSA(1*) and y yid VA
Output: y% mod N.

—

. Set i+ 0
. Send (N, e) to F.
. If F makes a hash query for M:
i it 1 My« M;r &2,
Flip a coin ¢; with bias 7.
¢; = 0 with probability v and ¢; = 1 with probability 1 — +.
Return H(M) = y% - r¢{ mod N
4. If F makes a signature query for M;:
Return r; if H(M;) = r{ mod N. Otherwise stop.
5. If F outputs a forgery (M, z):
If HM) =y-r¢ mod N then output y? = z/r; mod N. Otherwise stop.
6. Go to step 3

W N

‘R answers a signature query at step 4 with probability v; the probability that R answers
all the signature queries is greater than y%is. Eventually F outputs a forgery with probability
er; R can use this forgery at step 5 with probability 1—+ to output y¢ mod N. Consequently
R outputs y¢ mod N with probability v%is - (1 — 7) - ep, which is maximal for v = 1 —
1/(gsig + 1) and gives (2).

B Proof of inequality (7)

Let Jsi
9(B) = peis .ZPr[ai =J]- (1 - 2_kO>J)
=0
with () B
o 1-08)-67 if j <qs
Prla; = j] = {5613@ if j = qSiZ)

We denote gy = max{g(5); 8 € [0,1]} and want to prove that

1
>
90 = 1+6'QSig'27k0

Denoting v = 2% we obtain from (21) and (22):

IBQSig

- 1-(1—7)-8 (1= B+ (1 —r)tis . Blaist1) (23)

9(B)

17

from which we derive: -8
> Qsig —
9(B) = prie - 7— 51y

If v - gsig > 1/2, we take f =1—1/(2 - ¢sig) and obtain:

(1 qsig 1
(e)
g 2'Qsig 1+2'7'QSig

(1)QSig 1
1- > —
2. qsig 2

1 > 1
1+2'7'QSig) 1+6'7'Qsig

For g4ig > 1 we have

Using 7 - gsig > 1/2, we obtain

>
90_2_(

For 7 - g4ig < 1/2, we take # = 1 and obtain using (23):

1

>(1—v)is >1 —rv. gy > —————
90_(’7) = Y qszg_1+6"')"q$z'g

for Y " dsig < 1/2

C Proof of theorem 4

Let F be a forger which (%, ¢sig, ghash,€)-breaks PSS. We construct an inverter I which
(t',€')-breaks RSA. The inverter receives as input (N, e,7) and must output % mod N. The
inverter Z maintains a counter ¢, initially 0.

The proof is very similar to the proof of theorem 2 and to the original security proof of
PSS in [2]. To answer a hash query M||r in theorem 2, we generated a random z € Zy and
y = x¢-n® with b= 0 or b = 1, and defined H(M]||r) = y. The only difference here is that
we write y as 0||w||r*||y, where the size of w is k; bits, the size of 7* is ko bits and the size
of 7y is the remaining k — ko — k1 — 1 bits. We define H(M||r) = w and G(w) = r* @ r||y.
Moreover we must make sure that the same w never appears twice otherwise we would be
re-defining G(w).

When a message M appears for the first time in a hash query or a signature query, the
inverter increments the counter ¢ and sets M; < M. Then, the inverter generates a list L;
of ¢sg random integers in {0, 1}k°.

When the forger makes a H-oracle query for M;||r, we distinguish two cases. If r belongs
to the list L;, the inverter sets b = 0, else it sets b = 1. Then the inverter generates a random
x € Z% until the first bit of y = z¢ - n° mod N is 0. Then it writes y as 0[|w||r*||y and sets
H(M;||r) = w. The inverter aborts if w has already appeared before. Eventually the inverter
sets G(w) = r* @ r||y and returns w as the answer to the H-oracle query M;||r.

When the forger makes a G-oracle query for w, the inverter returns G(w) if w appeared
before. Otherwise it generates a random string o +— {0,1}¥=%1~1 sets G(w) = «, and returns
a.

When the forger makes a signature query for M;, the inverter picks up a random r in L;
and discards it from the list. If there was already a H-oracle query for M;||r, the inverter
knows z, y, w, r* and «y such that y = z° mod N and y = 0||w||r*||y where H(M;||r) = w
and G(w) = r* ®r||y, so the inverter returns z as a signature for M;. Otherwise, the inverter
generates a random z € Z}, until the first bit of y = 2® mod N is 0. Then it writes y as

18

Ol|w||r*||y and sets H(M;||r) = w. The inverter aborts if w has already appeared before.
Then the inverter sets G(w) = r* @ ||y, and returns z as a signature for M;.

Since there are at most guqsn hash queries and g4 signature queries, the number of
distinct w which can appear is less than qpqs, + ¢sig- The probability that the inverter
aborts after generating a random w is then less than (gnash + gsig) 2=k1_ Therefore, the
inverter aborts when answering the hash and signature queries with probability less than
8 = (Qhash + 4sig)? - 27F1. Consequently, the forger outputs a forgery with probability at least
€ —d.

When the forger outputs a forgery (M, s), we compute y = s mod N and write y as
Ol|w||7*[|y. Let r = r* & G1(w), where G denotes the first kg bits of G. If there was no H-
oracle query for M||r before, the probability that w = H(M||r) is at most 27*1. Therefore,
with probability at least € —§ —27%1, the forger outputs a forgery and there exists an integer
i such that there has been a H-oracle query for M;||r. Then if r does not belong to the list
L;, the inverter knows z such that y = z¢ - 5, which gives n¢ = s/z mod N and the inverter
succeeds in outputting 7¢ mod N.

As in theorem 2, the probability that r does not belong to the list L; of g4, random
integers is (1 — 2 %0)dsis. If ky > log, gsig and for gs;y > 2, this gives

» Qsig
(1—2’“))“2(1— 1) >1
qsig 4

Consequently, the success probability & of the inverter is at least (¢ — § — 27%1)/4, which
shows that for kg > log, g5 the probability of breaking PSS[ko, k1] is almost the same as
the probability of inverting RSA.

For smaller values of ky, we apply the same trick as in theorem 2: we generate fewer
than gs;4 random integer in the lists L;, according to the same distribution with parameter
B. As in theorem 2, the success probability of the inverter is at least:

(—0—277) g f(g)

where f() is given by equation (6). As in theorem 2, we select a value of S which maximizes
this success probability; we obtain that the inverter succeeds with probability at least:

e—6—27h
1+6'QSig'2_k0

Moreover, when answering the hash and signature queries, the probability that the first
bit of ¢ - n° mod N is 0 for a random = € Zy is at least 1/2. Therefore we stop the loop
after 1 + k; steps®, which adds a failure probability of 27%1 per hash or signature query.
Eventually, the success probability ¢’ of the inverter is at least:

e — €—2- (Qhash + CIsig)z 27k
1+6- 9sig - 27 ko

which gives equation (10). The running time of the inverter is the running time of the forger
plus the time to generate the z¢ - n® mod N, which gives (9).

3 otherwise the running time could not be bounded.

19
D Proof of lemma 1

We show inductively over n that, letting D,, be the following distribution
i< [1,n]
D, =< (a1,...,a,) < [LK]"
B« [1,K]

and denoting for any j € [1,n] the events:

Aj : (al,...,aj,l,aj) €eQ
Bj:(a1,...,aj-1,0) € Q

with A; = A; 4 for all j € [2,n], then the following holds:

Pr[A, A Bj] > Pr[A,]'ta (24)
D, D,
Inequality (24) clearly holds for n = 1. Assuming that inequality (24) holds for n — 1, we
show that it holds for n. In the following, unless specified otherwise, probabilities are taken
according to the distribution D,,. Since ¢ is randomly selected in [1,n], we have:

1 1
Pr[Ay A Bj] = = Pr{Ay A Bi] + ”T Pr[A, A Bili > 2] (25)

The events A,, and B; are independent, which gives:

Pr[A, A B;] = Pr[A,] - Pr[B;] = Pr[A,] - Pr[4,] (26)
We have: .
Pr{dn] = - > Pridg|as = ai]
a1€[1,k]
and

Pr[An A Bili > 2] = % S Pr[A, ABil(a1 = ar) A > 2)]
a1€[1,k]

Letting L1 = {a1 € [1,k] | (a1) € Q}, we have using Pr[A;] = #L1/k and A, = A;:
Pr[A, N A1] Pr[A,] 1

Pridnldi] = Pr{A;]] Pr[A] T #L alzegl Pridnlen = (#)
and
Pr{A, ABIi 22 = Pi{Ai]- 2 3 PrlAuABil(=a) AG2 2] (28)
a1€L

For all j € [2,n], let A;-_l = A; A (a1 = a1) and B}_l = Bj A (a1 = a1), and let D/,_; be
the following distribution:

We have:
Dl?r [Al 1] = Pr[A,]an = aq] (29)
n—1

20

and
Pr[A, ABi|(an =a1) AN (i >2)] = Dfl’r [Al_, A B}] (30)

n—1

Applying inequality (24) for n — 1, we obtain:

Pr (4, ABy) > Pr (4] 5

n—1 n—1
which gives using equations (28), (29) and (30):
PrA, ABili >2) > Prldi]- —— 3 PrlAgfar =] (31)
- B #1L1 a1€L

From the inequality
t

t T
1 1
;meZ(;Zm,) for r>1
i=1 i=1
we obtain:
) sy
PI‘[An A BZ|Z > 2] > PI'[Al] . E Z Pr[An|a1 = al]

a1€Lq
which gives using (27):
Pr[A, A B;|i > 2] > Pr[A;] -Pr[An|A1]# = Pr[4,]- Plr[An\Al]ﬁ

Then using equations (25) and (26), we obtain:

|

Pr[An A B] > Pr[Ay] (Pr[:l] n_l

Pr[An\Al]ﬁ>
n

Using the well known inequality S > P between the arithmetic mean S and the geometric
mean P, we obtain:

1
- (Pr[Al] +(n—1)- Pr[An|A1]ﬁ) > (Pr[A1] - Pr[Apn|A1])7" = Pr[A,]=
and eventually

Pr[A, A Bj] > Pr[A,] T n

which shows that equation (24) holds for n and terminates the proof by induction.

Inequality (24) gives:
Pr[A, A ~Bj] = Pr[An] — Pr[A, A B;] < Pr[Ay] - (1 - Pr[An]l/")

Denoting z = Pr[4,]'/" and using the inequality 2" - (1 — &) < exp(—1)/n for z € [0, 1], we
obtain:

-1
Pr[A, A -B;] < exp(~1)
n

21

E Definitions for security proofs in the random oracle

In this section, we consider a signature scheme provably secure in the random oracle model.
In the random oracle model, the hash function is replaced by a random function.

Definition 8 (random oracle). For any constant k, a random oracle is a function H
selected uniformly at random in the set Hy, of the functions from {0,1}* to {0,1}*.

We say that a signature scheme is a hash-and-sign signature scheme if the signature
generation algorithm first hashes the message and then signs the hash value using the private
key.

Definition 9 (hash-and-sign scheme). A signature scheme (Gen, Sign, Verify) is said
to be a hash-and-sign signature scheme if Sign takes as input the message M, the public
key pk and the private key sk, runs Hashing with M and pk, obtains h, then runs Signing
with h and sk, obtains and returns the signature x, where:

- Hashing is an algorithm taking as input the message M to be signed and the public key pk
and returning a string h. Hashing may have access to a random oracle.

- Signing is an algorithm taking as input h and the private key sk and returning the sig-
nature x. Signing does not have access to a random oracle.

Examples of hash-and-sign signature schemes include the FDH scheme, PSS, Gennaro-
Halevi-Rabin’s scheme (GHR) in the random oracle model [11], Paillier’s signature scheme
[16] and DSA [10].

The hashing algorithm may require multiple hash oracle queries, for example two hash
queries as in PSS. For simplicity, we say in the following that a forger can make gp,s, hash
queries if he can apply Hashing to gpqsn messages. The actual number of hash queries gj,
will then be a multiple of gpqsp (for PSS, we have qj ., = 2 - qhash)-

We say that a signature scheme is with unique signature if each message has a unique
signature, given the random oracle H € Hy; formally:

Definition 10 (signature scheme with unique signature). A signature scheme is said
to be with unique signature if for any public key pk, any message M and any random oracle
H in Hy, there is a unique x such that Verify,, (M,z) = 1.

Hash-and-sign signature schemes with unique signature include FDH, GHR in the ran-
dom oracle model and Paillier’s signature scheme. PSS and DSA are not signature schemes
with unique signature.

Lemma 2. Let S be a hash-and-sign signature scheme with unique signature. Let h <+
Hashingpk(M). The signature = of M is then a function of h and the public key pk only.

Proof. We denote Signﬁc’ k> Hashinggc and Verify;f;g the algorithms Sign, Hashing and
Verify with oracle access to H € Hy,.

Let x be the signature of M with random oracle H € H; and public key pk. Let
(pk', sk') be another public/private key pair, M’ another message, and H' € Hj, another
random oracle. Let h' + Hashingfk', (M') and o' < Signing,. ,/(h'). We must show that
if pk = pk' and h = b/, then z = 7'

From pk = pk' and h = b/, we deduce h' + Hashinggc(M) and z’ < Signing, .. (h'),
which implies that z’ is a signature of M under the public key pk with random oracle H.
Since S is a signature scheme with unique signature, we must have z = z'.

O

22

The security of the signature scheme that we consider is not necessarily based on the
hardness of inverting RSA; it can be based on the hardness of any search problem I7, defined
as follows:

Definition 11. A search problem II is a triple (Genll,D,S) where D is a set of finite
objects called instances, and for each instance I € D, S[I] is a set of finite objects called

solutions for I. GenII is an algorithm which, on input 1%, randomly selects an instance
I € D such that |I| = k.

Definition 12. An algorithm A is said to (ta,ea)-solve II if after receiving an instance
I generated using GenlI(1%) and t(k) processing time it outputs a solution z for I with
probability greater than ea(k) for all k € N.

Definition 13. A problem II is said to be (ta,ea)-hard if there is no algorithm A which
(ta,ea)-solves II.

In the following we consider a hash-and-sign signature scheme with unique signature
provably secure in the random oracle model, assuming that solving a given problem IT is
hard. This means that there exists a reduction from solving the hard problem I to breaking
the signature scheme S. A reduction from solving II to breaking § is an algorithm which
uses a forger for S in order to solve I1. Resistance against adaptive chosen message attacks
is considered, so the forger is allowed to make signature queries for messages of his choice.
Moreover, in the random oracle model, the forger cannot compute the hash function by
itself: the forger must make a hash query. Consequently, when interacting with the forger,
the reduction algorithm must answer the hash queries and the signature queries made by
the forger.

Definition 14. A reduction R in the random oracle model from solving (GenlIl, D, S) to
breaking (Gen, Sign, Verify) is a probabilistic algorithm taking as input an instance I
and (Qnash, Gsig), where I < GenII(1%), and outputting a solution z for I. The reduction
algorithm interacts with a forger F for (Gen, Sign, Verify) which outputs a forgery after
at most gpasn hash queries and gy signature queries. The reduction algorithm answers the
hash queries and the signature queries made by F.

We quantify the efficiency of the reduction by giving the probability that the reduction
algorithm outputs a solution of the problem IT using a forger that (tg, ghash,gsig.€F)-breaks
the signature scheme, within an additional running time of ¢p.

Definition 15. We say that a reduction algorithm R (tgr, Qhash, sig: €F, ER)-reduces solving
(Genll, D, S) to breaking the signature scheme (Gen, Sign, Verify) if after running any
forger that (tF, Qhash, Gsig,F)-breaks (Gen, Sign, Verify), the reduction outputs a solution
of IT with probability greater than egr, within an additional running time of tg.

In this section we consider reductions running a forger only once, as the reduction of
theorem 1 for FDH. Reductions running a forger more than once will be considered in the
next section. The following theorem shows that for any hash-and-sign signature scheme with
unique signature provably secure in the random oracle model, assuming the hardness of a
given problem II, the security reduction cannot be tighter than roughly er/q¢siy. Namely
we show that from R we can solve the problem IT with probability greater than roughly
ER — €F/dsig, in roughly the same time bound. Thus, if solving IT is hard, the success
probability e of R cannot be greater than roughly er/qsig-

23

Theorem 9. Let R be a reduction which (tr, qhash, dsig, ER, EF)-Teduces solving IT to break-
ing a hash-and-sign signature scheme with unique signature. R runs the forger only once.
From R we can construct an algorithm which (ta,ea)-solves II, with:

ta=2 1R (32)

exp(—1) Gsig \
eA:eR—sp-i-(l——g) (33)
Gsig 9hash

Proof. From a reduction R that (g, qhash, qsig, €F, €r)-reduces solving IT to breaking the
signature scheme (Gen, Sign, Verify), we build an algorithm A that (¢4, 4)-solves IT using
R. The algorithm A receives as input an instance I of the problem IT and must output a
solution z of I using R. As in the proof of theorem 5, the algorithm A will simulate a forger
with respect to R. A arbitrarily selects gpqq, distinct messages My,..., My, . of length
O(k).

First A receives from R the public key pk. Then A runs Hashing for the gpq5, messages
M, ..., My, .., performs the corresponding hash queries to R, and obtain the corresponding
strings hi,...,hg,,,,- A selects a random integer 8 € [1, gnqsp) and a random sequence « of
gsig integers in [1, gnasn]\{B}, which we denote o = (a1, ..., ag,;,). A selects a random integer
i € [1,¢sig] and define the sequence of ¢ integers o = (a1,...,®;—1,0). Then A makes the i
signature queries corresponding to o’ to R and receive from R the corresponding signatures,
the last one being the signature sg of Mg.

Then the reduction R is rewound to the state in which it was after the hash queries,
and this time, A makes the g;4 signature queries corresponding to . If R has answered all
the signature queries, then with probability er, A sends (Mg, sg) as a forgery to R. From
lemma 2 the signature sg of Mjg is a function of hg and pk only, so sg is still a valid signature
of Mg after R has been rewound. This is a true forgery for R because after the rewind of
R, there was no signature query for Mg. Eventually R outputs a solution z of instance I.

We denote by Q the set of sequences of signature queries which are correctly answered by
‘R after the hash queries, in time less than ¢g. If a sequence of signature queries is correctly
answered by R, then the same sequence without the last signature query is also correctly
answered, so for any (ai,...,q;) € Q, we have (ai,...,a;_1) € Q. Let denote by ans the
event o € Q, which corresponds to R answering all the signature queries after the rewind,
and by ans’ the event o/ € Q, which corresponds to R answering all the signature queries
before the rewind.

Let consider a forger which makes the same hash queries, the same signature queries
corresponding to «, and outputs a forgery for Mg with probability ex. By definition, when
interacting with such a forger, R would output y% mod N with probability at least €. After
the rewind, R sees exactly the same transcript as when interacting with this forger, except if
event ans is true and ans’ is false: in this case, the forger outputs a forgery with probability
er, whereas our simulation does not output a forgery. Consequently, when interacting with
our simulation of a forger, R outputs y% mod N with probability at least:

eg — €r - Pr[ans A —ans’] (34)

Using lemma 1 with n = ¢,y and k = gpqsh, We obtain:

-1) -1
Pr[ans A —ans’] < exp(~1) (1 . Usig) (35)
qsig 9hash
The term (1 — gsig/qhasn) in equation (35) is due to the fact that we select as, ... y Qlgysg 11

[1, grasn] \ {8} whereas in lemma 1 the integers are selected in [1, gpqsp]- From equations (34)

24

and (35) we obtain that Z succeeds with probability greater than e; given by (33). Because
of the rewind, the running time of Z is at most twice the running time of R, which gives
(32).

F Proof of theorem 6

In this section, we consider reductions running a forger more than once, as opposed to
section E in which the forger was run only once. The reduction can run or rewind the forger
at most r times. Using the same technique as previously, we show that from a reduction
R allowed to run or rewind the forger at most r times, we can solve the problem I with
probability greater than roughly er — ep - 7/gsig in roughly the same time bound. Thus, if
solving II is hard, the success probability of R cannot be greater than roughly er - 7/gsiq-

The proof is very similar to the proof of theorem 9. Assume first that the reduction is
not allowed to rewind the forger. The reduction is only allowed to run the forger at most r
times. We say that the reduction is in the j-th round if the reduction has already run the
forger 7 — 1 times. Thus there are at most r rounds.

In the first round of the reduction, we apply exactly the same technique as previously: we
make the gpqsp hash queries, then we select a random 1 € [1, gpqsn) and a random sequence
a1 of g integers in [1,gpesn] \ {B1}. We select a random integer i1 € [1,¢s;4] and define
the sequence o) as the first 47 — 1 integers of ay plus the integer ;. Then we make the
i1 signature queries corresponding to ¢ to R and obtain the signature sg, of Mpg,. Then
we rewind R to the state it was after the hash queries, and this time, we make the gy,
signature queries corresponding to a;. If R has answered all the signature queries, then
with probability e, we send (Mpg,,sg,) as a forgery to R.

Then the reduction is in the second round, and starts interacting with a forger for the
second time. We proceed recursively for the remaining rounds: at the j-th round, we make
the same @45, hash queries and select §;, o and 4; as previously. We obtain the signature of
Mg, , then we rewind R to the state it was after the hash queries, then make the signature
queries corresponding to a;, and with probability eg output the signature of Mp, as a
forgery. Using this technique, we are able to simulate a forger being run at most r times by
the reduction.

Let us denote ans;- the event in which the reduction in the j-th round answers the
signature queries before it is rewound and ans; the event in which the reduction answers
the signature queries after it is has been rewound.

Let consider a forger which at each round makes the same hash queries and signature
queries corresponding to cj, and outputs a forgery for Mg, with probability er. By definition,
when running at most r times this forger, R succeeds with probability at least eg.

After the rewind of the j-th round, R sees exactly the same transcript as when interacting
with this forger, except if event ans; is true and ans;- is false: in this case, this forger outputs a
forgery with probability ¢, whereas our simulation does not output a forgery. This happens
with probability:

ep - Prans; A —ans]

Since there are at most r rounds, .4 succeeds with probability greater than:

r

ER — Z er - Prlans; A —ans]

i=1

25

Using lemma 1, we obtain for all j:

-1
1 .
qsig 9hash

Consequently, A succeeds with probability greater than:

exp(—1)-r s -1
8A:8R—8F-7-(1——g) (36)
4sig dhash

The reduction R is rewound at most r times, so the running time of A is at most 7+ 1 times
the running time of R, which gives:

ta=(r+1)-tg (37)

Now assume that the reduction R is allowed to rewind the forger to a previous state
S. Equivalently we assume that the reduction actually restarts the forger with the same
random tape and provides the same input to the forger until the same state S is reached.
If R restarts the forger at the j — 1-th round, the reduction is now in the j-th round. We
distinguish two cases: if the reduction sends the same public key and provides the same
answer to the hash queries, the forger will make the same signature queries and forgery as
in the 7 — 1-th round. Therefore our simulation will make the same signature queries and
forgery as in the 5 — 1-th round. At the j-th round the reduction sees exactly the same
transcript when interacting with the forger as when interacting with our simulation, except
with probability:

er - Prans; A —ans]

Otherwise if the reduction sends a different public key or provides a different answer to the
hash queries, the forger makes signature queries for random messages and forge the signature
of a randomly chosen message, and so our simulation makes signature queries for random
messages and forge the signature of a randomly chosen message. Consequently, at the j-th
round the reduction sees exactly the same transcript when interacting with the forger as
when interacting with our simulation, except with probability:

er - Prans; A —ans]
Consequently, we obtain the same result as previously: A succeeds with probability at least
€4 given by equation (36).

G Security definitions in the standard model

Definition 16. A forger F is said to (t,qsiq,c)-break the signature scheme (Gen, Sign,
Verify) if after at most qgq4(k) signature queries and t(k) processing time, it outputs a
forgery with probability at least e(k) for all k € N.

Definition 17. A signature scheme (Gen, Sign, Verify) is (¢, ¢sig, €)-secure if there is no
forger who (t,qsig,€)-breaks the scheme.

Definition 18 (signature scheme with unique signature). A signature scheme is said
to be with unique signature if for any public key pk and any message M, there is a unique
signature T such that Verify,, (M,z) = 1.

26

Note that a signature scheme with unique signature is necessarily state-free: the signature
of a message does not depend on previously signed messages.

We assume that the security of (Gen,Sign,Verify) is based on the hardness of the
problem II, so there exists a reduction from solving IT to breaking the signature scheme in
the standard model.

Definition 19. A reduction algorithm R in the standard model from solving (GenlIl, D, S)
to breaking (Gen, Sign, Verify) is a probabilistic algorithm taking as input an instance I
and gsig, where I < GenII(1F), and outputting a solution z for I. The reduction algorithm
interacts with a forger F for (Gen, Sign, Verify) which outputs a forgery after at most qgiq
signature queries. The reduction algorithm answers the signature queries made by F.

Definition 20. A reduction algorithm R is said to (tr,qsig,€F,€R)-reduce solving II to
breaking the signature scheme (Gen, Sign, Verify) if after receiving an instance I such that
I < GenII(1%) and running any forger that (tF,qsig, €F)-breaks the signature scheme, the
reduction R outputs a solution z for I with probability at least eg(k) after at most tr(k)
additional processing time for all k € N.

H Proof of theorem 7

The proof is very similar to the proof of theorem 6. The only difference is that there are no
hash queries. Moreover, we replace in algorithm A the number of hash queries g5, by the
lower bound 2¢ on the size of the message space; instead of selecting gnqspn distinct messages,
we select 2¢ distinct messages My, ..., Mye. The rest of algorithm A is the same, and the
same analysis shows that from a reduction with running time of ¢, which succeeds with
probability at least er after running or rewinding at most 7 times a forger that breaks the
signature scheme with probability at least ep, we can build an algorithm which (t4,€4)-
solves the problem II, with:

ta=(r+1)-tg

exp(=1)-r (1 B qsz‘g>_1
924

EA—ER —EF "
qsig

I A variant of GHR’s scheme provably secure in the standard model

Let us consider Gennaro-Halevi-Rabin’s signature scheme [11]. The public key is N = p - ¢
and a random y € Z%;, where p and g are random k/2-bit primes and (p—1)/2 and (¢—1)/2
are also primes. The private key is (p, ¢). The scheme uses a hash function H which outputs
odd integers of length ko bits. To sign a message m, the signer obtains e = H(m) and
computes the signature ¢ as the e-th root of y modulo N, using p,q. To verify a signature
o, one computes e = H(m) and checks that o¢ = y mod N.

The security of Gennaro-Halevi-Rabin’s signature scheme is based on the hardness of
the strong RSA problem.

Definition 21 (Strong RSA problem). Given a randomly chosen RSA modulus N and
a random element s € Z%;, find a pair (e,r) with e > 1 such that r® = s mod N.

In this section we illustrate theorem 7 with a variant of GHR’s scheme provably secure in
the standard model, with unique signature. The hash function H is replaced by an injective
function ¥ which maps any string from {0, 1}Z to the set of prime integers, so that ¥ is

27

easy to compute. Such a function is constructed in [11]. We obtain a signature scheme with
unique signature provably secure in the standard model. However the scheme is provably
secure for short messages only (say, less than 40 bits); this is due to the 2¢ factor in the time
bound tr of the forger. We denote by #(£) the time necessary to compute V.

Theorem 10. Assume that the strong RSA problem is (t1,er)-hard. Then the previous GHR
variant is (tr, gsig, €r)-secure, where:

t; = tp + poly (2{ k,t(é)) (38)
1 qsig+1
e = L. (1 =) (39)
qsig Qsig + 1

Proof. Assume that there exists a forger F that (tr, gsig, €r)-breaks the signature scheme
(Gen, Sign, Verify). We construct an algorithm .4 that solves the strong RSA problem using
F. A will answer the signature queries of the forger itself. The message space is {0, 1}%.

Algorithm for A.
Input: (N, s) and (£, gsig), where N < RSA(1F) and s £ Ly
Output: (r,e) with e > 1 such that v = s mod N.

1. Let E + 1.
2. For all messages M; € {0,1}¢, do the following:
Flip a coin ¢; with bias 7.
¢; = 0 with probability v and ¢; = 1 with probability 1 — +.
If ¢; = 0 then compute E < E - ¥(M;).
. Let y < s mod N.
Send the public key (N, y) to F.
5. If 7 makes a signature query for M;:
If ¢; = 0 then return s#/¥(Mi) mod N. Otherwise stop.
6. If F outputs a forgery (M;,x):
If ¢; = 0 then stop.
Otherwise ¥(M;) AN E =1 so let a,b € Z such that a - ¥(M;) +b- E = 1.
Let r < 2 - s mod N and e < ¥(M;) and output (r,e).

B~ W

The probability that A answers to all the signature queries is greater than y%is. Even-
tually F outputs a forgery with probability e which A can use with probability 1 — v to
output (r,e). Consequently A outputs (r,e) with probability «%is - (1 —) - ep, which is
maximal for v =1 —1/(gsy + 1) and gives (39). O

J Proof of theorem 8

We use the following method: we consider PSS in which the random salt is fixed to 0*°,
and we denote this signature scheme PSS0[ko, k1]. Consequently, PSS0[ko, k1] is a signature
scheme with unique signature. First, we show how to convert a forger for PSS0[ko, k1] into
a forger for PSS[ko, k1]. Then, any reduction R from inverting RSA to breaking PSS[ko, k1]
will use this forger for PSS[kg, k1] in order to invert RSA. Consequently, from a forger for
PSSO0[ko, k1], we can invert RSA using the reduction R. In other words, from R we can
construct a reduction Ry from inverting RSA to breaking PSS0[kg, k1]. Since PSSO0[ko, k1] is
a signature scheme with unique signature, theorem 6 gives an upper bound for the success
probability of Ry, from which we derive an upper bound for the success probability of R.

28

This upper bound shows that the size ko of the random salt must be at least log, gsi4 for
PSS[ko, k1] to have a security level equivalent to RSA, and so our security proof of section
3.2 is optimal.

Lemma 3. Let Fy be a forger which (t%, 4>, qgig, €%.)-breaks PSSO0[ko, k1]. From Fo we can
construct a forger F which (tg,qhash, dsig, €F)-breaks PSS[ko, k1], with:

_ 2k0+1

0 0 0
dhash = Qpqsh sig = " Gsig EF = 8F/2

Proof. From Fy we construct a forger F for PSS[ko, k1]. When the forger F makes a hash
query, the forger F makes the same hash query and forwards the result to Fy. When the
forger Fy makes a signature query for a message M, the forger F makes signature queries
for M until the random salt used to generate the signature is 0%0. Then it forwards the
signature to Fy. Eventually the forger Fy outputs a forgery for PSS0[ky, k1], which is also a
forgery for PSS|ky, k1].

When F makes a signature query, the random salt used to generate the signature is equal
to 0% with probability 27%0. Therefore F must perform on average 25 signature queries for
each signature query of Fy. More precisely, let Y; be the number of signature queries made
by F for the i-th signature query of Fy, and let Y be the total number of signature queries
made by F. Since F is limited to ¢4 signature queries, the probability that all the signature
queries of Fy are answered is Pr[Y < g,4]. In this case, the forger Fy outputs a forgery with
probability at least €. Therefore, the forger F outputs a forgery with probability at least
% - Pr[Y < ggigl-

The distribution of Y; follows a geometric law of parameter 1 — 27 %o:
Pr[Y; = j] =27%0 . (1 —27k0)i=L for j>1
The expectancy and variance of Y; are given by:

E[Y;] =2 VarY;] =2k . (2k0 - 1)

We assume that Fy makes exactly qu- ¢ signature queries®. Since Y is the sum of qgl- o inde-
pendent random variables, we obtain:

E[Y] = 2k0 . qug Var[Y] — qug . 2k0 (2k0 _ 1)

Then, using Chebyshev’s inequality, we have for any 4:

Y
Pr[|Y — E[Y]| > 6] < Va;[]
and taking § = E[Y], we obtain for qgig > 2
1 1
qsig 2

If qgig =1, then Y =Y; and

2ko+l 1
PrlY > 2. E[Y]] = Pr[y; > 2Fo+1] = (1 . 2*’90)

4 Otherwise we can simulate the remaining signature queries with previously queried messages. If Fo makes
no signature queries, then F outputs a forgery with the same probability as Fo.

29

Using the inequality (1 — 1/z)* < 1/2 for > 1, we obtain as previously:

2k q
Pr[Y > 2- E[Y]] < (1 - 2—’“0) <3
So letting
Qsig = 2kott. q(s)ig
this gives Pr[Y > gg4] < 1/2 and thus Pr[Y < gy4] > 1/2. Consequently, the forger F
outputs a forgery for PSS[ko, k1] with probability at least

EF = E?p /2
after at most g4 signature queries. O

Lemma 4. Let R be a reduction which (tr,qhash,sig) €F,ER)-Teduces inverting RSA to
breaking PSS[ko, k1]. From R we can construct a reduction Ro which (t%, qgash, qgig, %.,€%)-

reduces inverting RSA to breaking PSSO0[ko, k1], with:

qsig = qgig - kot Ghash = qgash
(40)

er =¢e%/2 5325%
1% =tr (41)

Proof. Let Fy be a forger which (t%, ¢ ,.p, qu’g, e%)-breaks PSSO0[ko, k1]. Using the previous
lemma we construct from Fy a forger F which (t7, ghash, gsig, €F)-breaks PSS[kg, k1], where
Qhash 4sig and e are given by equation (40). Then from F using R we can invert RSA with
probability at least eg.

Therefore, from F; which (t%,qgash,qgig,soF)—breaks PSSO0[kg, k1], and using R, we can
invert RSA with probability at least eg. Consequently, from R we can construct a reduc-
tion R¢ which (¢%, q,Omsh, qgig, £%.,€%)-reduces inverting RSA to breaking PSSO0[ko, k1], where
€% =eg and t%, = tg. O

Let R be a reduction which (tg, ghash,dsig: €F,€ERr)-reduces inverting RSA to breaking
PSS[ko, k1]. From lemma 4, we construct from R an algorithm Ro which (t%, g2, qu-g ,
e, €%)-reduces inverting RSA to breaking PSSO[ko, k1], where t%, ., 4%, €% and €}, are
given by equations (40) and (41). The reduction R can run or rewind the forger at most r
times, so Ry runs or rewinds the forger at most r times. Then from Ry using theorem 6 we

construct an algorithm Z which (¢, e;)-inverts RSA, with:
tr=(r+1)-t%

0 -1
exp(—1 qs;
8]26%—7"8%'#' 1— OSZg
qsig hash

Using equations (40) and (41) with gpesh > 2 gsig and exp(—1) < 1/2, we obtain:

0 -1 ko+2
-1 qs; 2%0
r.g%.%.(l_ﬂ> ST.EF.

0 0 .
qsig Qhash Gsig

which shows that the inverter succeeds with probability at least:

2k0+2

ER—T- €
gsig

and gives equations (19) and (20).

