
0

Robust Software Tokens: Towards Securing a

Digital Identity

Taekyoung Kwon

Taekyoung Kwon is with the Faculty of the Department of Software Engineering, School of Computer Engi-

neering, Sejong University, Seoul, 143-747, Korea. E-mail: tkwon@sejong.ac.kr . Phone: +82-2-3408-3758. Fax:

+82-2-3408-3662.

Taekyoung Kwon, 2001

1

Abstract

This paper presents a new method called the robust software token for providing users with a stable

and portable container in which a private key is stored and kept from adversaries, by simple software-only

techniques. The proposed scheme is comparable with the related noble work such as a cryptographic

camouflage scheme[5] and a networked cryptographic device[10], but equipped with several advantages;

(1) it uniquely supports both closed and open domains on public key infrastructures, (2) it supports more

protocol setup, (3) and it is more efficient than the others. This paper handles the new RSA-based scheme

only. The DSA-based scheme sharing the basic idea was done in the previous work[9].

Keywords

Digital identity, software token, private key management, public key infrastructure, authentication,

digital signature

I. Introduction

The rapid growth of sensitive services on the Internet makes the digital identity of

individuals more important than before. A public key infrastructure (PKI) based on

famous standards like X.509[6] enables the digital identity by allowing each user to have an

authentic public key and private key pair in a distributed environment. This is stronger and

more scalable than the identity based on passwords only. The PKI-based digital identity

is beneficial to such applications that need identification or digital signature of individuals

in a secure manner. However, it is users’ responsibility to carry their private keys securely

for convincing others of their digital identities. If a user’s private key is compromised, it

can be used by an imposter to forge the user’s digital identity, i.e., forgery and loss of

privacy could result from it. Such a cryptographic key is not favorable to human memory.

Accordingly a container must belong to each user for carrying the private key. We call

this a token in this paper by distinguishing from passcode generator-like devices.

A. Previous Solutions

The token is a mean to provide users with a stable and portable container of the private

key and to keep the private key from adversaries. A tamper-resistant hardware token such

as a crypto smart card, would be a great and promising solution for this but it could have

various shortcomings provided that it is used alone, for example, practical deployment

problems and possible channels which may be established surreptitiously[2].

Taekyoung Kwon, 2001

2

Alternatively, a user-controlled software-only computing device such as a desktop com-

puter, notebook and handheld, may contain a software token for easier deployment. How-

ever, such a device is not tamper-resistant and a typical form of the software token is

the encrypted private key under an encryption key derived from a memorable password

of low entropy. The private key is verifiable by off-line attacks, for example, an adversary

who compiled a dictionary of likely passwords and stole the software token, can decrypt a

candidate key, sign an arbitrary message, verify it with a corresponding authentic public

key, and repeat this procedure until (s)he gets a correct one. Such an attack works in a

relatively small space of passwords[7], [12]. This is the reason why the PKCS#5-encrypted

private key is insecure[15]. Readers are referred to Appendix I of this paper for the detail.

Several methods were proposed to deposit the password-encrypted private key to the

trusted server and download it when necessary[13]. A virtual card solution used in prac-

tice[18], prevents off-line attacks and provides mobility in that sense, but needs to store

all user credential information in the center server. Therefore such a centralized technique

is not our main concern. It will be only combined with the proposed scheme for mobility.

Recently software-only device techniques have been proposed for improving security.

Those techniques do not deposit all credentials to the center server. They instead exploit

network connectivity in a way to cooperate with the trusted server entity for the private

key. They include the cryptographic camouflage[5] and the networked cryptographic de-

vice1[10]. The point to see is, however, the cryptographic camouflage is only useful in the

so-called closed PKI environments where the trusted server is the only who can verify the

user’s digital identity, while the networked cryptographic device does not directly support

the closed PKIs, meaning that the server only assists a signature. Our scheme will remove

these restrictions. As for the open and closed PKIs, a verifier must utilize a user’s public

key certificate controlled by a certificate authority (CA) for verifying the user’s digital

identity. The closed PKI is mainly focused on two-factor authentication[5] in that sense.
1Though the scheme proposed in [10] originally did not assume the trusted server, we claim the trusted server

is eventually necessary for that scheme because both the user’s password and the server’s private key are actu-

ally the Achilles tendon of the scheme in terms of security. For example, it may be a possible threat that the

“untrusted” server obtains a user’s password by guessing attacks along with a corresponding user’s token, or the

server misbehaves by refusing the user’s request. Accordingly the trusted server must be assumed for the scheme.

Taekyoung Kwon, 2001

3

Our Scheme Crypto Camouflage[5] Networked Crypto Device[10]

Server/Token Compromises Offline Attack Offline Attack Offline Attack

Server Compromise � � Offline Attack on Passwords

Token Compromise � � �

Closed PKI Support O O X

Open PKI (Assisted) Support O X O

Open PKI (Entrusted) Support O X X

TABLE I

First Comparisons of Related Schemes

B. Contributions

This paper presents a new method called the robust software token for keeping the private

key from adversaries by software-only techniques. For the purpose, a user must keep two

factors such as a password in his or her mind and a private key in the robust software token

while a trusted server just holds its own private key. The user can simultaneously keep

the private key in a tamper-resistant hardware token. This paper handles the RSA-based

schemes only. The DSA-based schemes are respectively described in [9], [5], and [10].

For clearly summarizing our contributions, we present Table I ahead. Our scheme may

be comparable with the related work in some sense[5], [10], but advantageous to them

because it will be uniquely designed; (1) to support the closed PKI as well as the open

PKI, (2) to support many kinds of protocol setup, and (3) to be more efficient. Note that

our scheme will protect not only the user’s private key but also the user’s password only

except when the server and the token are compromised together.

II. Preliminaries

In this section we summarize the notation to be used and describe more detail of the

related work[5], [10]. Subsequently we state the security goals for our scheme.

A. Notation

Let us borrow partly the noble notation used in [10]. Let κ be the security parameter

such that κ = 160, while λ another parameter such that λ = 1024 or 2048. Let rst denote

Taekyoung Kwon, 2001

4

the robust software token, dvc the user-controlled device, and svr the trusted server. Let

π be the user’s password, pksvr the trusted server’s authentic public key, and sksvr the

corresponding private key. Let < e, N > and < d, N, φ(N) > be the user’s authentic public

key and private key pair where ed ≡ 1(mod φ(N)) and N is the product of two large prime

integers[16], [14]. Note the Euler totient function φ(N) is necessary for initializing software

tokens[5], [10]. Notation not described here will be declared in each part of this paper.

B. Related Work in Detail

B.1 Cryptographic Camouflage

Hoover and Kausik presented a pioneer study called cryptographic camouflage in 1999[5].

Their basic idea was simple but strong to make the plaintext unidentifiable by encrypting

random-looking plaintext only, for example, the RSA private exponent d only (not n).

However, they also had to encrypt the user’s public key under pksvr for security reasons,

meaning that the authentic public key was not public any more. Consequently this prop-

erty restricted its use to authentication in the closed PKI only, say, a user cannot prove

his or her digital identity to most parties who do not know sksvr. In addition they needed

a longer private key and public key pair, for example, d + lφ(N) having (|l| + 1)λ bits in

length where |l| means the bit length of a small integer l and a public key e having κ bits

in length[5]. Readers are referred to Appendix II of this paper for more detail.

B.2 Networked Cryptographic Device

MacKenzie and Reiter presented the networked cryptographic device along with a noble

security proof in 2001[10] inspired by work of [4]. Their basic idea was to split the user’s

private key and share them between dvc and svr by encrypting the server’s portion under

pksvr. They also suggested the new ability for the user to disable the private key provided

that the token is compromised. However, the system was designed for the open PKI only,

meaning that, dvc had to show the user’s password information rather than an authentic

public key to svr for obtaining a complete digital signature. This scheme accordingly does

not support the digital identity in the closed PKI environments[5], [9] because svr actually

uses the password information rather than the certified public key for authentication.

Readers are referred to Appendix III of this paper for more detail.

Taekyoung Kwon, 2001

5

C. Security Goals

The proposed scheme should allow dvc and svr to communicate securely over a public

network in order to run the digital identity operations based on PKIs. Note that dvc

contains rst. An adversary is assumed to have a dictionary of likely passwords and control

the whole network, meaning that (s)he controls any inputs to dvc and svr, and hears all of

their outputs. Then we define the following security goals.

• The proposed scheme must guarantee that the adversary needs sksvr as well as rst for

breaking the system. In other words, the adversary should compromise both dvc and svr

for getting information on the user’s private key.

• The proposed scheme must guarantee that additional off-line attacks are necessary for

obtaining the correct private key even if dvc and svr are both compromised.

• The security must hold in the closed PKI as well as the open PKI, but each domain

must be distinguished. That means, the digital identity aimed for the closed PKI must

not be re-used for the open PKI and vice versa.

Let vrf denote an actual verifier for the user’s digital identity. Then vrf is only svr in the

closed PKI while it can be any party in the open PKI.

III. How to Make a Robust Software Token

This section states the basic idea of our scheme and a method to make rst in detail.

A. Basic Idea

The idea is conceptually identical with that of our previous work on the digital signature

standard (DSS)[9] firstly inspired by the cryptographic camouflage method. Our idea is:

one public key is paired to two kinds of private keys and left unencrypted. One of those

private keys is a pure private key while the other is a protected key. The pure key is used

in the RSA signature algorithm as usual and must be securely stored in a tamper-resistant

device. The protected key works with the proposed protocols and will be handled by rst.

B. Making a Robust Software Token

A user’s key pair, a password, and a server’s public key are loaded by the entity kgc

who is responsible for key generation. The values are < e, N >, < d,N, φ(N) >, π, and

Taekyoung Kwon, 2001

6

pksvr. Then kgc computes the followings:

e1 ←R Zφ(N) : choose another RSA exponent at random in length κ.

d1 ← e−1
1 mod φ(N) : compute a mod φ(N) inverse of e1.

a ← k(π) : derive a symmetric encryption key from π by k().

b ←R {0, 1}1 : choose one bit at random.

c ← (dd1 mod φ(N))− b : multiply d and d1 (mod φ(N)), and subtract b from it.

x ← Ea(R(c)) : encrypt c under a by random padding, R().

y ← Epksvr(R(e1)) : encrypt e1 under pksvr by randomized encoding, R().

Ei() denotes symmetric encryption while Ei() does asymmetric encryption, under each

key i. R() means random padding. Let the random encoding function R() include a

timestamp readable by svr. This may be useful for controlling lifetimes and further resisting

replays. k() means a key derivation function as defined in PKCS#5. Above dd1 mod φ(N)

may remind readers of the noble work, digital multisignatures[3], stemming from the very

different idea. Note that −b is normal integer subtraction, not in Zφ(N). It may perturb

c to be odd or even with probability 1
2 . An adversary cannot verify correct guesses by

decrypting x through likely passwords because c is perturbed and x is random padded,

i.e, (s)he cannot find any notable characteristics from c even if x is correctly decrypted.

Several policies are allowed to make rst, e.g., either svr or dvc can act kgc. As for svr

acting kgc, y can be made more efficient such that y = Eξ(e, e1) where ξ is svr’s secret key.

Assume the user’s public key is certified by CA and C denotes the certificate. Then the

values C and < x, y,N > are packed in rst while the values C and < d,N, φ(N) > are

stored in a tamper-resistant hardware token. The values e, d, N, φ(N), π, e1, d1, a, b, c, x, y,

and pksvr are permanently erased from kgc. Note that pksvr may be further necessary for

the open PKI protocols. So we add it to rst if necessary. Finally kgc can issue the robust

software token as well as the tamper-resistant hardware token to the corresponding user.

Hence rst may be saved in stable storage on the user-controlled device.

The tamper-resistant hardware token is used in the open PKI only if the reading device

is ready. In most cases, the robust software token rst can be used in the closed PKI and

in the open PKI as well. Next two sections will describe this.

Taekyoung Kwon, 2001

7

dvc svr

G ←R {0, 1}κ

G←−−−
a ← k(π)

c ←R−1(Da(x))

c ← c + 1 if even

m ← h(svr, h(G))

M ← R(m)

s ← M c mod N

C, y, s−−−→ verify C

e1 ← R−1(Dsksvr(y))

M1 ← (se)e1 mod N

m1 ← R−1(M1)

Abort if m1 6= h(svr, h(G))

Otherwise, accept

Fig. 1. Two-factor Authentication Protocol

IV. Robust Software Token in the Closed PKI

As we mentioned already, the only entity who knows sksvr should verify the user’s digital

identity in the closed PKI. Two kinds of services such as two-factor authentication and

closed digital signature can be implemented between dvc and svr who has sksvr.

A. Two-factor Authentication

A server may authenticate a user by verifying something (s)he knows, something (s)he

has, or something (s)he is. The most widely used methods are based on something (s)he

knows, say memorable passwords[1], [7], [8], [12], but they are relatively deficient in se-

curity and scalability[5]. Two-factor authentication based on something (s)he knows and

something (s)he has may improve the security and scalability.

In the protocol of Figure 1, the user who knows π and has rst can prove his or her digital

identity to svr who has sksvr. The user types π in dvc while loading rst and connecting

Taekyoung Kwon, 2001

8

dvc svr

m ← {0, 1}∗

a ← k(π)

c ←R−1(Da(x))

c ← c + 1 if even

M ← R(h(svr, h(m))

s ← M c mod N

C, y, s, m−−−−−→ verify C

e1 ← R−1(Dsksvr(y))

M1 ← (se)e1 mod N

m1 ← R−1(M1)

Abort if m1 6= h(svr, h(m))

Otherwise, accept

Fig. 2. Closed Signature Protocol

to svr. An initiating signal to svr is omitted in the Figure. Upon receiving the random

challenge G from svr, dvc derives a from π, recovers c from x, and adds 1 to c if it is even.

Subsequently dvc computes m = h(svr, h(G)), signs m by random encoding, and sends out

< C, y, s > to svr where h() is a typical one-way hash function.

The reasons for h(svr, h(G)) are distinct; (1) to prevent an adversary who may masquer-

ade svr from signing an arbitrarily chosen message instead of G, and (2) to keep s from

being re-used outside the svr’s domain, even if svr is compromised or misbehaving.

Upon receiving the values from dvc, svr verifies the signature by using e from C (so that

the system works in the PKI) and e1 from y. Since the signature s is random encoded,

an adversary’s attempt to re-sign h(svr, h(G)) under guessed decryption of x is ineffective,

meaning that s 6= s′ even with a correct guess.

B. Closed Signature

A user’s signature in the closed PKI is simply derived from the former protocol. The

user signs an arbitrary message m instead of G as depicted in Figure 2. A timestamp in

R() may work against replays. The reasons for h(svr, h(m)) are as same as above.

Taekyoung Kwon, 2001

9

V. Robust Software Token in the Open PKI

In this section, we state two methods for using rst in the open PKI. One allows an en-

trusted signature protocol setup while the other does an assisted signature protocol setup.

Both setup assume the same security but may arouse various applications respectively.

The basic idea of our scheme in open PKIs is very simple that svr is fully trusted and able

to complete the dvc’s open signature from the information sent by dvc. It is svr’s given

authority to decide whether (s)he sends the dvc’s signature to the out world or sends it

back to dvc as requested by dvc. This may not deteriorate security and privacy compared

to an ordinary signature scheme because the signature is already purported open. Note

that we omit hashing message m before signing for simplicity in this section.

A. Entrusted Open Signature (Figure 3)

Firstly dvc generates a closed signature under c and entrusts svr with it by attaching an

identifier of vrf. The reason for encrypting s under pksvr is to prevent an adversary who

obtained dvc and s1 from verifying the correct private key through likely passwords. It also

enables to use a common deterministic encoding δ() for M . After decrypting s0, svr can

check a timestamp against replays. Then svr computes s1 by raising s to e1. Assuming this

an open signature of dvc (actually the owner of rst), svr verifies its validity with < e, N >

(of C). If it is correct, then svr on behalf of dvc sends s1 to vrf. It is optional for svr to

log the record and report it to dvc. Such a record might be beneficial to non-repudiation

requirements. Accordingly vrf can verify the dvc’s signature with C as usual. Various

applications can be considered in this setup, for example, svr acts a secure mail server

while dvc runs a mail client. The signed email can be delivered to any recipients, vrf.

B. Assisted Open Signature (Figure 4)

In the assisted setup, dvc generates a signature under c and asks svr for completing

the open signature. Similarly s must be encrypted under pksvr and such decrypted. After

checking a timestamp, svr computes s1 by raising s to e1. Assuming this an open signature

of dvc (actually the owner of rst), svr verifies its validity with < e,N > (of C). Provided

that it is correct, svr sends back s1 to dvc. It is also optional for svr to log the record that

might be beneficial to non-repudiation requirements. Upon receiving s1, dvc verifies its

Taekyoung Kwon, 2001

10

dvc svr vrf

m ← {0, 1}∗

a ← k(π)

c ←R−1(Da(x))

c ← c + 1 if even

M ← δ(m)

s ← M c mod N

s0 ← Epksvr(R(s))

C, y, s0, m, vrf−−−−−−−−−→ verify C

e1 ← R−1(Dsksvr(y))

s ← R−1(Dsksvr(s0))

s1 ← se1 mod N

M1 ← (s1)e mod N

m1 ← δ−1(M1)

Abort if m1 6= m

Record(optional)

report(ack)
←−−−−−−−−

C, s1,m−−−−→ verify C

Record(optional) M1 ← se
1 mod N

m1 ← δ−1(M1)

Abort if m1 6= m

Otherwise, accept

Fig. 3. Entrusted Signature Protocol

validity with < e, N >. If it is correct, dvc sends s1 to vrf. Accordingly vrf can verify the

dvc’s signature with C as usual. Every application needing the dvc’s open signature can

be considered in this setup because dvc is the final sender of the signature.

C. Towards Mobility

Mobility is another requirement for digital identities. If rst is stored in a handheld

computer or a portable storage device such as a memory card, flash drive, USB token[17],

Taekyoung Kwon, 2001

11

vrf dvc svr

m ← {0, 1}∗

a ← k(π)

c ←R−1(Da(x))

c ← c + 1 if even

M ← δ(m)

s ← M c mod N

s0 ← Epksvr(R(s))

C, y, s0,m−−−−−−→ verify C

e1 ← R−1(Dsksvr(y))

s ← R−1(Dsksvr(s0))

s1 ← se1 mod N

M1 ← (s1)e mod N

m1 ← δ−1(M1)

Abort if m1 6= m

Record(optional)

s1←−−−−−
M1 ← (s1)e mod N

m1 ← δ−1(M1)

Abort if m1 6= m

verify C C, s1, m←−−−−
M1 ← se

1 mod N

m1 ← δ−1(M1)

Abort if m1 6= m

Otherwise, accept

Fig. 4. Assisted Signature Protocol

Taekyoung Kwon, 2001

12

etc., the mobility may not be an issue in the software token. However, dvc includes localized

systems such as desktop computers so that a supplementary method is necessary. Remind

that the virtual card solution[18] needed to store all user credential information in the

center server and it was a weak spot because such information was not entirely protected.

We can apply this model but with our enhanced security, meaning that a user deposits

rst to the mobility server msv and requests it in an authentic manner such as using a

password only[13], [16], before cooperating with svr. The security of svr must be assumed.

The point is that svr and msv are clearly separated in our mobility scheme. That means,

svr and msv are different and each password for rst and msv also must be different.

VI. Analysis

A. Security

Upon trusting svr, it is not problematic to allow svr even to complete the open signature

in both open models. On line attacks are also frustrated in that sense. If svr is untrusted or

compromised, however, the security assumed in the software token methods is deteriorated

because a further compromise of dvc is to be a critical weak point as well as a denial of

service is possible. This is the shared property of the related schemes[5], [9], [10] as we

noted earlier. However, our scheme does not allow the compromised server to obtain

password information by dictionary attacks before explicitly obtaining dvc compared to

[10] (see Appendix III). Our security goals mentioned in Section II-C are achieved.

• The adversary needs sksvr as well as rst for breaking the proposed system simply because

(1) c is perturbed and x is random padded, (2) s is random encoded or encrypted under

pksvr, and (3) e1 has κ bits in length. As for (1), an adversary cannot expect any kinds

of known characteristics from c since Da(x) and R−1(Da(x)) will both produce random

data even with a correct guess. As for (2), (i) signing the same message will not produce

the same signature s even with a correct private key, and (ii) the adversary, who listened

s0 and s1 in the open protocol and obtained dvc, cannot find any relation between them

because s is explicitly encrypted to s0 under pksvr in the open protocol. A timestamp

included in s0 by R() will resist replays sent to svr. As for (3), e1 is securely encrypted

and not guessable at all so that the adversary cannot utilize it for his or her attack.

Taekyoung Kwon, 2001

13

Number of Multiplications Client Server Communication

dvc svr Costs in Bytes

Cryptographic Camouflage 1[5] 1.5λ 2.25λ + (σ + 1) m1 : d κ
23 e m2 : d 3λ

23 e

Cryptographic Camouflage 2[5] 1.5(σ + 1)λ 1.5λ + (1.5κ + σ + 1) m1 : d κ
23 e m2 : d 3λ

23 e

Robust Software Token 1.5λ 1.5λ + (1.5κ + 2σ + 2) m1 : d κ
23 e m2 : d 3λ

23 e

TABLE II

Performance Evaluation of Software Tokens in Closed PKIs

Number of Multiplications Client Server Communication

dvc svr Costs in Bytes

Networked Crypto Device[10] 1.5λ + (3σ + 4) 9λ m1 : d 5λ+κ
23 e m2 : d λ

23 e

Robust Software Token 1 1.5λ + (σ + 1) 3λ + (1.5κ + 2σ + 2) m1 : d 3λ+κ
23 e m2 : d κ

23 e

Robust Software Token 2 1.5λ + (2σ + 2) 3λ + (1.5κ + 2σ + 2) m1 : d 3λ+κ
23 e m2 : d λ

23 e

TABLE III

Performance Evaluation of Software Tokens in Open PKIs

• The adversary still needs off-line attacks for obtaining the correct private key even if

(s)he compromised dvc and svr, because c is encrypted under the password-derived key a

and dvc does not show the password information to any party ahead in the protocol run.

• The digital identity aimed for the closed PKI cannot be re-used for the open PKI and vice

versa. For the purposes, the closed signature explicitly included the recipient’s identifier

and perturbed the pre-image like h(svr, h(G)) while the open signature did not.

As we examined above, the security may hold2 in the closed PKI as well as the open PKI,

and each domain can be distinguished even with the same public key and private key pair.

B. Efficiency

If the RSA exponent is chosen at random, RSA encryption using the repeated square-

and-multiply algorithm will take λ modular squarings and expected λ
2 modular multipli-

cations[11]. From this point of view, we can evaluate the computational performance of
2Though the security can be hopefully proved by informal descriptions above, a formal security proof would like

to be discussed in the next version.

Taekyoung Kwon, 2001

14

software token methods in a simple manner. Let us compare the proposed scheme with the

cryptographic camouflage[5] in closed PKIs (Table II) and the networked cryptographic de-

vice[10] in open PKIs (Table III) separately since both object schemes are such restricted.

We assume m’s length κ in open schemes, and cryptographic camouflage schemes and our

schemes include the certificate verification process. Let σ = 16 while e = 216 + 1 and

pksvr = 216 + 1. The key size and the communication costs are such approximated.

In Table II, two versions of the camouflaged tokens for resisting a Wiener’s attack[20],

[19] as well as a brute force attack[5] are considered. Note that camouflage scheme 1 needs

e of length λ
2 while camouflage scheme 2 does e of length κ but with d such as d + lφ(N)

of length (σ + 1)λ[5]. In camouflage scheme 1, dvc needs 3λ
2 multiplications while svr

does 9λ
4 + (σ + 1). In camouflage scheme 2, dvc needs 3λ(σ+1)

2 multiplications while svr

does 3(λ+κ)
2 + (σ + 1). Appendix II describes the protocol. In our scheme, dvc needs 3λ

2

multiplications while svr does 3(λ+κ)
2 + 2(σ + 1). Camouflage scheme 1 explicitly needs

much more computation for svr and camouflage scheme 2 does for dvc than our scheme.

In Table III, the networked cryptographic device is compared to our two open schemes.

Note that τ needs at least three λ-blocks and γ does two λ-blocks depending on m in the

networked cryptographic device[10]. Appendix III describes the scheme in detail. In the

networked cryptographic device, dvc needs 3λ
2 +3(σ +1)+1 multiplications while svr does

at best 18λ
2 (= 3λ

2 ∗ 3 + 3λ
2 ∗ 2 + 3λ

2) because of τ and γ. In our scheme 1 (entrusted), dvc

needs 3λ
2 +(σ +1) multiplications while svr does (6λ+3κ)

2 +2(σ +1) including the certificate

verification. In our scheme 2 (assisted), dvc needs 3λ
2 + 2(σ + 1) multiplications while svr

does (6λ+3κ)
2 + 2(σ + 1) including the certificate verification. The networked cryptographic

device explicitly needs much more computation for svr and communications costs than our

schemes. As for the computation of dvc, our schemes are still slightly more efficient.

VII. Conclusion

The private key management is very important for security and privacy related to digital

identities. This paper presented the new robust software token for securing private keys

by software-only techniques. We would like to say that our schemes improved the related

noble work[5], [10] in many features. Compared to the related work, the proposed schemes

were more efficient and uniquely allowed more protocol setup in closed as well as open

Taekyoung Kwon, 2001

15

PKIs without sacrificing security. Also our schemes allowed the conventional encoding rule

for open signatures. We hope for the proposed schemes to be accepted in practice because

one public key and two private keys (one for the robust software token and the other for

the tamper-resistant hardware token) must be useful for securing digital identities.

References

[1] S. Bellovin and M. Merrit, “Encrypted key exchange: Password-based protocols secure against dictionary

attacks,” In Proceedings of the IEEE Symposium on Security and Privacy, pp.72-84, 1992.

[2] S. Brands, Rethinking Public Key Infrastructures and Digital Certificates, The MIT Press, pp.219-224, 2000.

[3] C. Boyd, “Digital multisignatures,” Cryptography and Coding, Oxford University Press, pp.241-246, 1989.

[4] R. Ganesan, “Yaksha: Augmenting Kerberos with public key cryptography,” In Proceedings of the ISOC

Network and Distributed System Security Symposium, February 1995.

[5] D. Hoover, B. Kausik, “Software smart cards via cryptographic camouflage,” In Proceedings of the IEEE

Symposium on Security and Privacy, 1999, http://www.arcot.com .

[6] ISO/IEC 9594-8, “Information technology - Open Systems Interconnection - The Directory: Authentication

framework,” International Organization for Standardization, 1995 (equivalent to ITU-T Recommendation

X.509, 1993).

[7] D. Jablon, “Strong password-only authenticated key exchange,” ACM Computer Communications Review,

vol.26, no.5, pp.5-26, 1996

[8] T. Kwon, “Authentication and key agreement via memorable password,” In Proceedings of the ISOC Network

and Distributed System Security Symposium, February 2001.

[9] T. Kwon, “Digital signature algorithm for securing digital identities,” To appear in Information Processing

Letters, 2001.

[10] P. MacKenzie and M. Reiter, “Networked cryptographic devices resilient to capture,” In Proceedings of the

IEEE Symposium on Security and Privacy, 2001, a full and updated version is DIMACS Technical Report

2001-19, May 2001.

[11] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, pp.290-291,

1997.

[12] R. Morris and K. Thompson, “Password security: a case history,” Communications of the ACM, vol.22, no.11,

pp.584-597, 1979.

[13] R. Perlman and C. Kaufman, “Secure Password-Based Protocol for Downloading a Private Key,” In Proceed-

ings of the ISOC Network and Distributed System Security Symposium, February 1999.

[14] PKCS #1, “RSA cryptography standard,” RSA Laboratories Technical Note, Version 2.0, 1998.

[15] PKCS #5, “Password-based encryption standard,” RSA Laboratories Technical Note, Version 2.0, 1999.

[16] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosys-

tems,” Communications of the ACM, vol.21, pp.120-126, 1978.

[17] Rainbow Technologies, http://www.rainbow.com/ .

[18] RSA Security Laboratories, http://www.rsasecurity.com/ .

[19] G. Simmons, “A “weak” privacy protocol using the RSA crypto algorithm,” Cryptologia, vol.7, pp.180-182,

1983.

Taekyoung Kwon, 2001

16

[20] M. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE Transactions on Information Theory,

vol.36, no.3, May 1990.

Appendix

I. PKCS#5-Encrypted Private Key

Appendix I is described for a beginner. Advanced readers may skip this. PKCS#5 is the

password-based cryptography standard intended for protecting sensitive information[15].

PKCS#5 offers useful tools such as key derivation functions, encryption schemes, and

message-authentication schemes based on a human memorable password having the rela-

tively low entropy. This is accordingly the most widely used form of protecting the private

key in software. Actually such user credential information can be stored and transported

as defined in PKCS#8 and #12 owing to this. However, this scheme may disclose the plain

key in polynomial time to an adversary who compiled a dictionary of likely passwords.

Let t be salt, o a counter, dkLen the required key length, and dk the derived key.

Then dk ← F(π, t, o, dkLen) denotes the key derivation function F(), namely PBKDF,

outputs dk[15]. We usually define t ← {0, 1}κ and o ← 1000. Also we say private key

sk is PKCS#5 encrypted by describing ε ← Edk(sk). That is, sk is BER encoded and

encrypted under dk[15]. We may decrypt this with a function D(), say sk ← Ddk(ε). Note

that salt is traditionally used for the benefits such as disallowing to precompute all the

keys corresponding to a dictionary of passwords, and minimizing the possibility of selecting

the same key, while counters for increasing the cost of producing keys from passwords.

The PKCS#5-encrypted private key is vulnerable to off-line attacks because t and o

are saved in plain form, and the deterministic encoding method is used. For example, the

following attack works in a password space. An adversary who captured the PKCS#5

based token, < t, o, dkLen, ε, C >, tries to decrypt ε using his or her dictionary of π′ .

dk′ ← F(π′ , t, o, dkLen)

sk′ ← Ddk′ (ε)

If sk′ is not BER decoded, (s)he can discard the wrong guesses. Otherwise, (s)he tries

to sign an arbitrary message m with the decrypted and verify the signed message with C.

Taekyoung Kwon, 2001

17

Provided that the signature is not valid, (s)he can discard the wrong guesses. Otherwise

(s)he can expect it correct. (S)he repeats this procedure until (s)he gets a correct one.

II. Cryptographic Camouflage

Hoover and Kausik presented a pioneer study called cryptographic camouflage in 1999[5].

The key idea was to make the plaintext unidentifiable by encrypting random-looking plain-

text only and hiding the user’s public key from others except the trusted server[5]. Their

scheme inspired many related work including this paper[9], [10], but has several distinct

disadvantages against the related schemes.

For initializing the camouflaged token, a user must choose carefully the public key.

e ←R {Zφ(N)}κ

The user’s key pair, a certificate, a password, and a server’s public key are loaded by kgc.

They are < e, N >, < d,N, φ(N) >, C, π, and pksvr. Then kgc computes the followings:

a ← k(π)

l ←R {0, 1}σ

d1 ← d + lφ(N)

b ← Q(d1)

c ← Ea(b)

ρ ← Epksvr(R(C))

The values < c,N, ρ > are stored in the software token and the other values are all

erased. Note that d + lφ(N) is a normal integer addition and Q() truncates MSB and

LSB. The user having the software token can run the two-factor authentication protocol

depicted in Figure 5, with the trusted server only. This protocol is valid in closed PKIs

only and comparable to the protocol depicted in Figure 1. As we mentioned already, this

work inspired many related work including this paper[9], [10], but has several distinct

disadvantages against the related schemes.

Firstly the authentic public key is not public any more. Consequently its application

is restricted to authentication in the closed PKI only. Its security does not hold in open

PKIs.

Taekyoung Kwon, 2001

18

dvc svr

G ←R {0, 1}κ

G←−−−
b ← k(π)

a ← Db(c)

d1 ← Q−1(a)

M ← R(G)

s ← Md1 mod N

ρ, s−−−−→
C ← R−1(Dpksvr(ρ))

verify C

M1 ← se mod N

G1 ← R−1(M1)

Abort if G1 6= G

Otherwise, accept

Fig. 5. Cryptographic Camouflage’s Two-Factor Authentication Protocol

Secondly it is less efficient than the closed scheme proposed in this paper (see Table II

of this paper). Two versions were made for resisting a Wiener’s attack[20], [19] as well as

a brute force attack[5]. They needed a longer private key and public key pair, for example,

d + lφ(N) having (σ + 1)λ bits in length where we let σ the bit length of l, and a public

key e having κ bits in length. Otherwise, e of length λ
2 is necessary for having d of length

λ[5]. For the reasons, performance is worse than the protocol proposed in this paper, as

we discussed in Table II. In camouflage scheme 1 that needs e of length λ
2 , dvc needs 3λ

2

multiplications while svr does 9λ
4 + (σ + 1). In camouflage scheme 2 that needs d of length

(σ + 1)λ, dvc needs 3λ(σ+1)
2 multiplications while svr does 3(λ+κ)

2 + (σ + 1).

Finally it cannot accommodate the deployed user credentials, meaning that a user has to

be issued another new key pair for using the camouflage scheme. The reason is clear that

the public key must be encrypted and each key must be chosen by carefully considering

its length as we mentioned above.

Taekyoung Kwon, 2001

19

III. Networked Cryptographic Device

MacKenzie and Reiter presented the networked cryptographic device along with a noble

security proof in 2001[10] inspired by work of [4]. The key idea was to split the user’s

private key and share them between dvc and svr by encrypting the server’s portion under

pksvr. This scheme is advantageous to the related schemes in their formal security proof.

In spite of the proof, their assumption on untrusted server was wrong. As we noted earlier,

the trusted server is eventually necessary for security reasons. They also suggested the

new ability for the user to disable the private key provided that the token is compromised.

For initializing the software token, the user’s key pair, a password, and a server’s public

key are loaded by kgc. They are < e, N >, < d, N, φ(N) >, π, and pksvr. Then kgc

computes the followings:

t ←R {0, 1}κ

u ← hdsbl(t)

v ←R {0, 1}κ

a ←R {0, 1}κ

b ← h(π)

d1 ← f(v, π)

d2 ← d− d1 mod φ(N)

τ ← Epksvr(< a, b, u, d2, N >)

The values < t, v, a, τ, N, pksvr > are considered a private key portion and stored in

the software token along with C while the other values are all erased. Here note again

that the bit length of τ is bounded to at least 3λ and affects the efficiency. The values

< t, τ > are backed up off line for key disabling features. The user having the software

token can run the assisted signature protocol depicted in Figure 6, with svr. The networked

cryptographic device scheme can provides the assisted signature only. Also note again that

the bit length of γ is bounded to at least 2λ and affects heavily the efficiency depending

on the size of m. Table III only assumed the size of m at around 160 bits but larger m

will severely deteriorate the efficiency.

Taekyoung Kwon, 2001

20

This protocol is valid only for the assisted setup in open PKIs and comparable to the

protocol depicted in Figure 4. In Figure 6, random encoding is explicitly described through

r and enc, an arbitrary encoding function.

Though their scheme is elegant, a comparison should be made more clearly with our

schemes. At this time we cautiously urge that our schemes are advantageous to it.

Firstly their scheme did not allow svr to verify the digital identity of the counterpart,

based on the certificate issued in the PKI, while our scheme did it. In other words, their

system was designed only for assisting signatures in the open PKI. Authentication to the

trusted server was simply by showing the user’s password information, exactly a hash

value of the password, rather than an authentic public key to svr. Note that, however,

the password information was not verified by svr at initialization time, meaning that svr

actually cannot verify the real identity of dvc at protocol run time. The thing to be done

by svr at protocol run time is only assisting dvc to sign an arbitrary message without

exactly identifying who (s)he is. Accordingly this scheme does not support the digital

identity in closed PKIs[5], [9]. Even worse, such password information can be verified by

adversaries when dvc communicates with the compromised or misbehaving server. Then,

afterward, those adversaries can forge the user’s digital identity as soon as compromising

dvc. These may be disadvantageous to the related work[5], [9]. If one says these property

is rather beneficial to anonymous transactions with svr, our scheme also supports this idea

in a simple way. That is, dvc does not give C but rather e only to svr (see Figure 3 and

4). For this function, e can be included in y at initialization time.

Secondly our scheme even allows to use the commonly used encoding functions such as

BER/DER encoding for open signatures. However, their scheme needs to use a specific

encoding rule for security reasons. As for the open signaure rather than the closed one,

our encoding-free feature to follow the conventional encoding rule must be advantageous.

Thridly our scheme also supports the entrusted setup while their scheme does not. Note

that the entrusted setup as well as the assisted setup must be useful for these schemes.

Finally their scheme is less efficient than our scheme as described in Table III. In the

networked cryptographic device, dvc needs 3λ
2 +3(σ +1)+1 multiplications while svr does

at best 18λ
2 (= 3λ

2 ∗ 3 + 3λ
2 ∗ 2 + 3λ

2) depending on m, because of τ and γ.

Taekyoung Kwon, 2001

21

vrf dvc svr

β ← h(π)

ρ ←R {0, 1}λ

r ←R {0, 1}κsig

γ ← Epksvr(m, r, β, ρ)

δ ← maca(γ, τ)

γ, δ, τ−−−→
< a, b, u, d2, N >← Dsksvr(τ)

abort if maca(γ, τ) 6= δ

< m, r, β, ρ >← Dsksvr(γ)

abort if (β 6= b)

ν ← (enc(m, r))d2 mod N

η ← ρ⊕ ν

η←−−
ν ← ρ⊕ η

d1 ← f(v, π)

s ← ν(enc(m, r))d1 mod N

m1 ← se mod N

m2 ← enc(m, r)

abort if m1 6= m2

verify C C, s, m, r←−−−−−
m1 ← se mod N

m2 ← enc(m, r)

Abort if m1 6= m2

Otherwise, accept

Fig. 6. Networked Cryptographic Device’s Open Signature Protocol

Taekyoung Kwon, 2001

