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Abstract

A secret-sharing schene@ables a dealer to distribute a secret amengarties such that only some predefined
authorized sets of parties will be able to reconstruct the secret from their shares. The (monotone) collection of
authorized sets is called aaccess structureand is freely identified with its characteristic monotone function
f 40,1} — {0,1}. A family of secret-sharing schemes is calidticientif the total length of the: shares
is polynomial inn. Most previously known secret-sharing schemes belonged to a clageafschemes, whose
complexity coincides with thmonotone span prograsize of their access structure. Prior to this work there was
no evidence that nonlinear schemes can be significantly more efficient than linear schemes, and in particular there
were no candidates for schemes efficiently realizing access structures which do nétGe in

The main contribution of this work is the construction of two efficient nonlinear schemes: (1) A scheme with
perfect privacy whose access structure is conjectured not to N&in(2) A scheme with statistical privacy whose
access structure is conjectured not to lieRrpoly. Another contribution is the study of a class of nonlinear
schemes, termagliasi-lineaischemes, obtained lmpmposindinear schemes over different fields. We show that
while these schemes are possibly (super-polynomially) more powerful than linear schemes, they cannot efficiently
realize access structures outsiNg.

1 Introduction

Secret-sharing schemes enable a dealer, holding a secret piece of information, to distribute this secret among
n parties such that only some predefined authorized subsets of parties can reconstruct the secret from their share!
and others learn nothing about it. The (monotone) collection of authorized sets that can reconstruct the secret is
called amaccess structureand is freely identified with its characteristic monotone funcifan{0,1}" — {0,1}.

The first secret-sharing schemes were introduced by Blakley [14] and Shamir [48]. They conshmastiedld
schemes, in which the access structure is defined by a threshold function. General secret-sharing schemes, real
izing non-threshold access structures, were introduced by Ito, Saito, and Nishizeki [41], where it was shown that
every monotone access structure can be (inefficiently) realized by a secret-sharing scheme. More efficient schemes
for specific types of access structures were presented, e.g., in [11, 50, 18, 42]. We refer the reader to [49, 52] for

*This paper was accepted for publication in the proceedings of the 16th Annu. IEEE Conf. on Computational Complexity, 2001.



extensive surveys on secret-sharing literature.

Originally motivated by the problem of secure information storage, secret-sharing schemes have found numer-
ous other applications in cryptography and distributed computing (cf. [46, 10, 23, 25, 28]). However, secret-sharing
is independently interesting as a pure complexity question. The default complexity measure of secret-sharing
schemes is theshare sizei.e., the total length of all shares distributed by the dealer. This is a measure of the
amount of communication (or storage) required for sharing a sé@et of the most interesting open questions in
this area is to characterize which access structures ceffitientlyrealized, i.e., with shares of polynomial size in
the number of parties. For most access structures, the best known upper bound on the share size is exponential.
However, unlike other concrete complexity measures such as circuit complexity, one cannot apply simple counting
arguments to show that this must indeed be the case. In fact, given the current knowledge, one cannot even rule
out the possibility thaall access structures can be efficiently realized.

Several lower bounds on the share size of secret-sharing were obtained [22, 15, 30, 27, 26]. The strongest
current bound i$2(n?/logn) [26]. This bound applies to aexplicitaccess structure. However, as noted above,
there is a huge gap between these lower bounds and the best known upper bounds.

1.1 Linear vs. Nonlinear Secret-Sharing

Most previously known secret-sharing schemes Wiaiear. In a linear scheme, the secret is viewed as an
element of a finite field’, and the shares are obtained by applying a linear mapping to the secret and several
independent random field elements. Linear schemes may be equivalently defined by requiring that each authorized
set reconstructs the secret by applying a linear function to its shares [8]. For example, the schemes of [48, 14, 41,
11, 50, 18, 42, 31] are all linear.

The share size in linear schemes o¥erealizing a monotone functiofi is proportional to thenonotone span
programsize of f over F'. (Span programs are a linear-algebraic model of computation introduced in [42].) In
fact, there is a one-to-one correspondence between linear secret-sharing schemes and monotone span program
The class of functions that have polynomial size monotone span programs, which coincides with those admitting
efficient linear secret-sharing schemes, is fairly well understood: (1) it contains motSrand even monotone
symmetric logspace [11, 12, 42]; (2) it is contained in algekiZ (as follows from [13, 17, 45, 21]), implying
that it is contained ilNC? whenlog | F| is polynomially bounded; and (3) there are explicit monotone functions
that are provably not in this class [9, 2, 35].

As opposed to linear secret-sharing schemes, nearly nothing is known for general (i.e., possibly nonlinear)
schemes. Several constructions of nonlinear secret-sharing schemes have been suggested, both for the thresho
case [55, 29, 47] and for general access structures [19, 33]. The question of basing verifiable secret-sharing and se
cure multi-party computation on nonlinear secret-sharing has been recently studied in [24]. However, none of these
works provides evidence that nonlinear schemes are significantly more powerful than their linear counterparts.

The relation between linear and nonlinear complexity has been studied in other contexts, such as coding and
randomness extraction (cf. [54]). While in some of these contexts the margins of possible improvement obtained
by relaxing the linearity restriction are provably small, this is not the case for our problem. As discussed above,
it is not even known if there exists an access structuredhamotbe efficiently realized by a nonlinear scheme.

On the other hand, prior to this work there was no evidence that nonlinear schemes are significantly more efficient
than linear schemes. In particular, there were no explicit candidates for secret-sharing schemes realizing access
structures which do not lie iNC.

ISimilarly to almost all of the vast literature on secret-sharing, this work is concerned withftmmation-theoreticvariant of the
problem. A relaxed notion afomputationallysecure secret-sharing has been considered in [43, 6].

2By default, we ignore theomputationakcomplexity of the scheme. However, most of our efficient constructions are also computa-
tionally efficient. We explicitly indicate when this is not the case.



1.2 Our Results

We attempt to remedy the above state of affairs. To this end, we take two different approaches.

Specific candidates. The main contribution of this work is the construction of specific efficient nonlinear schemes,
whose access structures are conjectured to be hard. We present two main schemes, whose access structures &
related to two variants of the quadratic residuosity problefnthird scheme, which is a simplified version of the
second, realizes an access structure related to the co-primality prbblem.

The first scheme realizes an access structure whose computational complexity is equivalent to that of deciding
quadratic residuosity modulofixedprime, where the prime modulus may depend only on the number of parties.

This problem is not known to be INC. In particular, assuming that it is indeed nolNK, a separation of efficient
nonlinear schemes from efficient linear schemes follows.

The second scheme realizes a presumably much harder access structure, whose computational complexity is
equivalent to the general quadratic residuosity problem. The latter is widely conjectured to require exponential-
size circuits, and its intractability is implied by the so-call@dadratic Residuosity Assumptidi7], which is
commonly relied on in cryptography. In contrast to the first construction, the second construction only meets a
more liberal notion of secret-sharing (with a statistical relaxation of the perfect correctness and privacy require-
ments, see Section 2), and its reconstruction procedure is computationally inefficient. Yet, the second scheme
demonstrates that the share size in a secret-sharing scheme may be super-polynomially smaller than the circuit
size of its access structure.

As a variant of the second scheme described above, we obtain a scheme whose access structure is equivalent t
the co-primality problem. Similarly to quadratic residuosity modulo a (fixed) prime, the co-primality problem is in
P but is not known to be ilNC. The third scheme meets only the more liberal notion of security. However, unlike
the second scheme it is also computationally efficient. Compared to the first scheme, the co-primality problem is
more standard than the problem of deciding quadratic residuosity modixedprime. The main properties of
the three schemes described above are summarized in Table 1.

perfect/ access structure comput.
section| statistical related to. .. efficient?
quadratic residuosity
§3 perfect modulo a fixed prime yes
84 statistical| quadratic residuosity no
§4.2 | statistical co-primality yes

Table 1. Summary of Our Main Schemes.

Our constructions were inspired by a non-interactive private protocol for the quadratic residuosity problem
from [34]. In fact, every protocol in the model of [34, 40] can be transformed into a secret-sharing scheme for
a related access structure. In the context of communication complexity lower bounds, the quadratic residuosity
problem has been used in [4, 3].

Quasi-linear schemes. In addition to the above specific candidates, we study the class of nonlinear schemes
obtained bycomposindinear schemes over (possibly) different fields, which we teuasi-linearschemes. Com-
position of secret-sharing schemes has been used in previous works (cf. [11, 20, 53, 44, 25]). However, to the best

3The quadratic residuosity problem is that of deciding, given a pair of integerswhetherw is a square modula.

“The co-primality problem is that of deciding, given u, whetherged (w, u) = 1.

SWhile a generalization to quadratic residuosity modufixadcomposite is possible, this problem is essentially equivalent in a non-
uniform setting to deciding quadratic residuosity modulo a fixed prime.



of our knowledge this is the first work to explicitly discuss compositions of linear schemes over different fields.
We characterize the complexity of quasi-linear schemes in terms of Boolean formulas over the basis of monotone
span programs. While quasi-linear schemes are likely to be strictly more powerful than linear schemes, we prove
that they cannot realize any access structure out${deSpecifically, we show that the class of structures which

they can efficiently realize is contained NC*. Thus, quasi-linear schemes do not provide the strong (conjec-
tured) results implied by the specific candidates described above. On a positive note, we show an application of
quasi-linear schemes for the construction of secret-sharing schemes efficiently realizing monotone span programs
over aringz,, whereu is a square-free composite. A naive generalization of the construction for monotone span
programs ovefields[42] fails to achieve this godl.

ORGANIZATION. In Section 2 we present some definitions and background. In Sections 3 and 4 we describe our
two main constructions of efficient nonlinear schemes, and discuss the complexity of their access structures. In
Section 5 we introduce and study the class of quasi-linear schemes. Finally, in Section 6 we mention some open
problems.

2 Preliminaries

In this section we define secret-sharing schemes, linear schemes, and span programs, and briefly discuss the
connections between these notions. We end this section with some definitions related to the quadratic residuosity
problem.

Definition 2.1 (Access Structure)Let { P, ..., P,—1} be a set of parties. A collectiod C {0, P} g
monotoneif B € AandB C C imply C € A. Anaccess structurés a monotone collectiotd of hon-empty
subsets of Py, ..., P,—1} (thatis, A C 2{P0FPa-1}\ {(1). The sets ind are called theauthorized setsA set

B is called aminimal setof A if B € A, and for everyC ¢ B it holds thatC ¢ A. The minimal sets of an
access structure uniquely define it. Finally, we freely identify an access structure with its monotone characteristic
functionf4 : {0,1}" — {0,1}, whose variables are denoted, . .., x,_1.

Definition 2.2 (Secret-Sharing) Let S be a finite set of secrets, wherg > 2. Ann-party secret-sharing scheme
IT with secret-domair$' is a randomized mapping frosito a set ofn-tuplesSy x S1 x ... x S,_1, wheresS; is
called theshare-domaimf P;. A dealer distributes a secrete S according toIl by first sampling a vector of
shareqsy, ..., s,—1) fromII(s), and then privately communicating each shas¢o the partyP;. We say thatl
realizesan access structurd C 2170 »-1} (or the corresponding monotone functign : {0,1}" — {0, 1}) if
the following two requirements hold:

Correctness. The secret can be reconstructed by any authorized subset of parties. That is, for any sibsdt
(whereB = {P;,,... ,PZ-‘B‘}), there exists aeconstruction functiofRecp : S;, x ... X S,-‘B‘ — S such
that for everys € S,
Pr[Recp(Il(s)p) = s] =1,

wherell(s)z denotes the restriction dfl(s) to its B-entries.

Privacy. Every unauthorized subset cannot learn anything about the secret (in the information theoretic sense)
from their shares. Formally, for any subsgt¢ A, for every two secrets, b € S, and for every possible
shares(s;) p,cc:

Pr[Il(a)c = (si)pec] = Pr[I(b)c = (si)pec |-

®This result does not follow from [33], who impose stronger requirements in their definition of span programs over rings.




Theshare complexitpf the scheme (cxomplexityfor short) is defined ag?z‘ol log | S;].

The above correctness and privacy requirements capture the strict nogierfedtsecret-sharing, which is the
one most commonly referred to in the secret-sharing literature. We will also consider a relaxed but natural notion
of statisticalsecret-sharing, in whichl accepts an additional argumehtcalled thesecurity parameterand the
perfect correctness and privacy requirements are relaxstatistical correctnesandstatistical privacy defined
as follows.

Statistical correctness. Any authorized subset of parties can reconstruct the se@rtept witmegligibleprob-
ability (k). That is, for every authorizeB < A there exists a reconstruction functi®ecp such that

Pr[Recp(Il(s)p) = s] > 1 —e(k) 1)
for somee(k) € k),

Statistical privacy. Any unauthorized subset of parties learns only a negligible amount of information about the
secret. That is, for any unauthorizéd¢ A and two secrets, b € S,

SD<H(a7k)C'7H(b7 k)C) < e(k) (2)

for somee(k) € k~+(), whereSD(Y;, ;) denotes thetatistical distanceetween distribution), Y; and
is defined bySD(Yy, Y1) = 1 3, [PYo = y] — Pr{y; = 5|7

We next define the class tihear secret-sharing schemes. There are several equivalent definition for these
schemes, see [8].

Definition 2.3 (Linear Secret-Sharing) Let £ be a finite field. A secret-sharing scheiiids said to belinear
overF if:

1. The secret-domaif is a subset of".
2. There existly, . . ., d,,_ such that each share-domaff is a subset of the vector spag¥:.

3. The randomized mappirg can be computed as follows. First, the dealer chooses independent random
variables, denoted, ..., r;, each uniformly distributed ovel’. Then, each coordinate of each of the
shares is obtained by takinglmear combinatiorof r1, ..., r, and the secret.

We remark that the notions of perfect secret-sharing and statistical secret-sharing coincide in the case of linear
schemes: Any linear scheme that satisfies the weaker conditions of statistical correctness and privacy satisfies the
stronger requirements of perfect correctness and privacy.

As for any other concrete complexity measure, we will often implicitly use the term “scheme” for referring to an
infinite family of schemeqI1,, },,cAr, parameterized by the number of partiedn the statistical case, we require
the same negligible functior{k) to apply in Equations (1) and (2) for dll,, in the family. In the linear case, such
a family can have a different underlying field for eachA family {I1,, } .- is efficientif the complexity oflI,, is
polynomial inn (or the complexity ofi,, (k) is polynomial inn andk in the statistical case). Note that the above
definition does not make any requirement on the computational complexity of the scheme. We say that the scheme
is computationally efficienf both sharing the secret and reconstructing it can be done in timerpblidg |.S|).

Finally, the family of access structurdsi,,} realized by a scheme familfil,,} is naturally identified with a
monotone Boolean functiofi: {0, 1}* — {0, 1} or its characteristic language.

We next define span programs — a linear algebraic model of computation whose monotone version is equivalent
to linear secret-sharing.

"Equivalently, the statistical distance betwégnandY; may be defined as the maximum, over all functiehsof the distinguishing
advantaggPr{A(Yo) = 1] — P{A(Y1) = 1]|.



Definition 2.4 (Span Program [42]) A span progranover a fieldF is a triplet]\/Z = (M, p,v), whereM is an

r X ¢ matrix overF', the vectorws € F¢ is a non-zero row vector called tharget vectorandp is a labeling of the
rows of M by literals from{x, Zo, . .., xn—1,Zn—1} (€very row is labeled by one literal, and the same literal can
label many rows). A span prograﬁi is said to bemonotondf all of its rows are labeled by positive literals.

A span program accepts or rejects an input by the following criterion. For every inpat{0,1}" let A7,
denote the sub-matrix aff consisting of those rows whose labels are satisfied by the assigpmditte span
program]\//f acceptg if and only if 7'is in the row-span of\/, (where each row o/ is viewed as a vector if©).

A span prograntomputesa Boolean functiory : {0,1}"™ — {0, 1} if it accepts exactly those inpugssuch that
f(y) = 1. Note that monotone span programs compute monotone functions. Finakbyz ¢oé M is the number
of rowsin M.

The complexity of realizing a given access structure by a linear secret-sharing schermhidopeoportional to
the minimal size of a monotone span program averomputingf. Specifically,

Lemma 2.5 ([42, 8]) An access structure can be realized by a linear secret-sharing schemé'omexhich the
shares include a total af field elements if and only if it can be computed by a monotone span prograni'afer
sized.

It follows from [13, 17, 45, 21] that all functions that have small span programs &€ irSpecifically,

Lemma 2.6 If a function f has a span program ovel' = GF(q) of size/, then f has an arithmetic circuit of
sizepoly(¢) and depthO(log® ¢) over F, implying that it has a Boolean circuit of sigwly(¢, log ¢) and depth
O(log? ¢loglog q).

Quadratic Residues. Let Z, be the ring of integers module, whose elements are identified with the integers
{0,1,...,u—1}. Let Z¥ denote the multiplicative group of the elementsZfthat are relatively prime ta, that
is, the elements aof are{l < w < u : ged(w,u) = 1}. The number of element i&; is denoted byy(u), and
is referred to as the Euler function of

An integerw is said to be ajuadratic residuemodulow if ged(w,u) = 1 and there exists an integgrsuch
thatw = b? mod w. It is said to be auadratic non-residuenodulow if ged(w,u) = 1 and there is no integér
such thatv = b2 mod «. We will pay particular attention to the case where the modulus is an odd prithas,
w andb may be viewed as elements of the figdg. In this casew € Z; = Z, \ {0} is said to be a quadratic
residue if it is a square of some field element, amgiadratic non-residuetherwise. (The elemeftis neither a
guadratic residue nor a quadratic non-residue.) The number of quadratic residues pisdugoal to the number
of quadratic non-residues andjs— 1) /2. The quadratic residues form a subgroup of the multiplicative g&jip
Thequadratic residuosity problens that of deciding, givem andu, whetherw is a quadratic residue moduio
Whenu is restricted to be a prime (or given the factorization:pthis problem can be solved in polynomial time,
but is not known to have an efficieparallel algorithm. When is arbitrary, this problem is widely assumed to be
intractable. See Section 3.1 for more details.

3 An Efficient Nonlinear Scheme: The Perfect Case

In this section we construct an efficient nonlinear secret-sharing scheme whose access structure is conjecturec
not to lie inNC. The scheme constructed in this sectiompésfectlyprivate and correct. Atatisticalscheme
realizing a computationally harder access structure will be given in the next section.

Definition 3.1 (The Access StructureNQRP,) Letp be an odd prime aneh & |logp|. We define the-party
access structurdNQRP,,, wheren = om, by specifying its collection of minimal sets. The parties of the access



structure are denoted b¥?, where0 < i < m andb € {0, 1}. With eachw € {0,1}" (also viewed as am-bit

integer) we naturally associate a sBt, of sizem defined by:B,, e {P/":0<i<m}. AsetBisaminimal
set ofNQRP,, if:

e B={P? P!} forsomed <i < m,or:

e B = B, for somew such thatw is nota quadratic residue modulp. (That is, it is eithel0 or a quadratic
non-residue.)

We [etNQRP denote a family of access structures such thatifie structure iSNQRP,, for somep such that
|logp| = |n/2] (say, the least sugch).®

We next construct a secret-sharing scheméN@RP.

Theorem 3.2 For every odd prime there exists a perfect secret-sharing schem@&QRP , in which the secret-
domain is{0, 1} and the share-domain of each party4s.

Proof:  We prove this theorem by describing the secret-sharing scheme.

The dealer chooses at randam- 1 random elements, z1, . . ., zm—2 € Z, and an additional random element
r € Z,. Definezp,_1 & ;’;02 z;, where here and in the following all arithmetic operations involving ring

elements are performed i#),. The shares of the parties are specified in Table 2. We turn to prove that this secret-

‘ ‘ s=0 ‘ s=1 ‘
Pé’ 4+ 20| br?+ 2
Pib1§i<m Zi 2br? + 2

Table 2. A secret-sharing scheme for NQRP,,.

sharing scheme satisfies the correctness and privacy properties with respgR®,. Let SUM,, denote the
sum of them shares held by parties i,,. Both the correctness and the privacy proofs will rely on the following
lemma.

Lemma 3.3 SUM,, = w*r2.

Proof:

- If s =0then

m—1
SUM,, = Z 2+ 12 =12

i=0

- If s =1then
m—1 )

SUM,, = (zi + wi2’r2)

i=0
m—1 —1

1=

= 2+ 12 (w;2%)
j 0

s
Il
o

I
ﬁw
g

O

®To make the access structure ZPP-unifopntan be chosen to be the least prime in the intef&l/?!, 2/"/21 4 p), or 3 if none
exists. However, as for other number-theoretic functions, a random chgiceay be safer when assuming ttMQRP is not inINC.



Correctness. We separately consider two types of minimal authorized Bets

e B={P? P!} forsome0 <i < m. Inthis cases = 0 iff the shares of?? and P! are equal. This follows
from the fact thaR’r? # 0 mod p for everyi.

e B = B, for somew such thatw is not a quadratic residue. In this case, it follows from Lemma 3.3 that
s = 0iff SUM,, is a quadratic residue (since the product of a quadratic residue and a non quadratic residue
is a non quadratic residue).

Privacy. We need to prove that every unauthorized sulbset NQRP, has no information on the secret. It
suffices to prove this claim for evergaximalC' not in the access structure. There are two cases to consider.

e O =DBy)\ {P;“j} for somew € {0,1}" and0 < j < m. Thatis,C is a set of sizen — 1 such that for

exactly onej it contains neitheiD]Q noerl. We claim that in this case the share-vector of the parti€sim
uniformly distributed inZ;”—l, regardless of the secret. It suffices to show that for every seer€f0, 1},
every possible value of the share-vector fr@g’Y—l, and every fixed, € Z;, there exists a unique choice
of zg, ..., zm—2 generating this value with = ry. This can be verified by inspection of the corresponding
system of linear equations ove,.

e C = B, for somew € {0,1}" such thaw is a quadratic residue. In this case we claim that, regardless
of the value of the secret, the share-vector of the parti€s imuniformly distributed over then-tuples of
field elements whose sum is a quadratic residue. Indeed, by Lemma 8:3,Gfthen SUM, = r2, which
is a uniformly random quadratic residue. Furthermore, fixing the choiee thfe choices of; induce a
uniformly random share vector among all those which sun?toSimilarly, if s = 1 then SUM, = r?w.
Sincew is a quadratic residue, SUMs again a uniformly random quadratic residue determined, layd
the same argument as above applies.

A generalization of our construction fNQRP is described in Appendix A.
3.1 DoesNQRP Have an Efficient Linear Secret-Sharing Scheme?

The access structuldQR P we have realized above is related to the problem of deciding quadratic residuosity
modulo a prime. We would like to argue tStQRP is likely not to be inNC, which would imply in particular
thatNQRP cannot be efficiently realized by linear schemes. We start by describing some known facts about the
complexity of the quadratic residuosity problem.

Unlike quadratic residuosity modulo a composite, whose intractability is commonly assumed in cryptography
(see [37]), quadratic residuosity modulo a prime can be decided in polynomial time. All known algorithms for this
problem are sequential. It is not known if efficient parallel algorithms for this problem exist; that is, the situation
is similar to the exponentiation function and the gcd function. There are two types of known algorithms. The first
uses Euler’s criterion, which states thais a quadratic residue modulo an odd prigié w®—1/2 = 1 mod p.

Thus, this algorithm requires modular exponentiation. For a survey of algorithms for exponentiation see [38]. The
second type of algorithm computes the Jacobi symbol in a way similar to Euclid’s algorithm for computing the
gcd. For more details see, e.g., [5, Chapter 5]. “Weak” parallel algorithms for checking quadratic residuosity
follow from the algorithms of [32] for computing the Jacobi symbol and the algorithm of [1] for exponentiation.
More precisely, there is (1) an algorithm that runsCin/ log logn) time usingO(n!*<) processors [32]; (2)

an algorithm that runs i®(log? n log log ) time using2©(™/1°e") processors [32]; (3) an algorithm that runs in

O(log® n) time using2°(v"1°gm) processors [1].



The best known polynomial-size circuit for the quadratic residuosity problem has @épthog log n) where
n = log p [32]. Thus, given the current state of knowledge on this problem and the related modular exponentiation
problem, it is reasonable to assume that they are n®@n In fact, this assumption (for the exponentiation
problem) has been explicitly relied on in [16].

It is easy to see that deciding quadratic residuosity mogdan be very efficiently reduced to computing the
monotone function defined BYQRP,,. However, there is a major difference between the “standard” algorithmic
setting for this problem and our setting. Our setting is highly non-uniform, in the sense that with each input length
(or number of parties) we associate sdiredprimep. Hence, when computing this access structure one may use
a non-uniform “advice” depending gn In algorithmic terms, we allow unlimited preprocessing which depends
on the primep but not on the other input.. Nevertheless, we do not know how to use this type of preprocessing
to obtain an efficient parallel algorithm for the quadratic residuosity proBi¢inis interesting to note, however,
that deciding quadratic residuosity modulo@mposités no more difficult in our setting than deciding quadratic
residuosity modulo a prime, since the factorization of the composite may be used as advice.) To conclude, the
assumption thaNQRP ¢ NC is stronger than the assumption that the standard quadratic residuosity problem (or
modular exponentiation) is not INC, although still seems very reasonable given the current state of knowledge.

In light of the uncertain situation described above, one could hope for an unconditional super-polynomial lower
bound on a size of aonotone span prograrmomputingNQRP. This would be sufficient for proving that
NQRP cannot be efficiently realized by linear schemes and, as noted in the introduction, there are explicit mono-
tone functions for which such bounds are known. However, as we argue next, such lower bounds are impossible
to prove for theNQRP structure without proving tha&¥C! £ P. For a fixed(m + 1)-bit primep, the quadratic
residuosity function (modulp) is defined asf, (xo, . .., xm—1) = 1iff Z?jol x;2" is a quadratic residue modulo
p. This function is not monotone. To define the monotone access strdSiQR P we replaced each literal by
two parties, obtaining an access structure With parties. (This is a standard transformation, e.g., when proving
that monotone circuit evaluation 13-complete [36].) For technical reasons we also adaechinterms of size
two. It follows that the monotone formula size BIQRP,, is equal up to an additiveD(n) difference, to the
(non-monotone) formula size of the functigip. Thus, one cannot expect to prove strong lower bounds on the
size of a monotone span program (or even a monotone formul® @R P, since they will imply, in particular,
strong lower bounds on the (hon-monotone) formula size of the quadratic residuosity fufiction.

4 An Efficient Nonlinear Scheme: The Statistical Case

In this section we construct an efficient nonlinear secret-sharing scheme whose access structure is as hard a:
the general quadratic residuosity function. Unlike the previous construction, the scheme we construct below is
only statistically private and correct, and its reconstruction procedure is computationally inefficient. In Section 4.1
we show that perfect correctness (but not perfect privacy) can be achieved under a number-theoretic assumption.
We end this section by discussing a generalization of our construction which applies to the so-egiddosity
problem. As a special case, we obtain an efficient scheme whose access structure is computationally equivalent to
the co-primality problem.

Definition 4.1 (The Access StructureNQR,,,) Letm be a positive integer. We define theparty access struc-
ture NQR,,,, wheren £ 4m, by specifying its collection of minimal sets. It will be convenient in the following to
denote the firstm parties byW?, whereb € {0,1} and0 < i < m, and the lasRm parties byU?. With each
pair (w,u), wherew, v € {0,1}™, we naturally associate a subset of parti8g ,, of size2m, defined by:

def . . . .
Byu={W" : 0<i<m}u{U" :0<i<m}.
®Preprocessing can parallelize the algorithms for exponentiation when the field size and the exponentiation base are given in advance
(see [38]). However, in our case we know in advance the field size and the exponentiation power.
1%The best known lower bound on the formula size for an explicit functi@(iﬁ”(l)) [39].




We will freely identify stringsv, v as above with integers in the intervi@l, 2™ — 1]. A setB is a minimal set of
NQR,, if:

1. B={W?,Wl}or B={U?,U!} for somed < i < m, or:

2. B = B,,, for somew, u such thatw is nota quadratic residue module. (For technical reasons, we assume
here that this condition never holds wher= 1, and always holds whem = 0 except whem = 1.)

We letNQR denote the family of access structures in whichvtkta structure iSNQR |, 4.

We start by observing that the computational complexity of the access strié¢@R is essentially the same as
that of the general quadratic residuosity problem.

Claim 4.2 The circuit complexity oNQR is the same, up to af(n) difference, as that of the languagéw, u) :
|w| = |u| A aisw quadratic residue modulo u}.

It follows that under the Quadratic Residuosity Assumption [37], compuNi@R. requires circuits of super-
polynomial size. The remainder of this section will be devoted to proving the existence of an efficient nonlinear
secret-sharing scheme IQR. Specifically, we show:

Theorem 4.3 There exists a statistical secret-sharing schemeN@QR,,, in which:

e the secret-domain i§0, 1};

e the share size of each party@k? + km);
e the reconstruction error probability i8=*;
e the privacy level is(k) = O(k/2%).

Our secret-sharing scheme ®IQR,,, proceeds as follows. Lep £ 24m+3k+1 |n the following, all arith-
metic operations will be performed ifip. The dealer chooses, z1, ..., 20,1 € Zp at random subject to the
restriction that they sum to. In addition, it chooses two random integeérs. » < 2"tk and1 < ¢/ < 23(m+h),
Each party receives a single element®, as specified in Table 3. For amplifying the correctness probability,

‘ ‘ s=0 ‘ s=1 ‘
Wob % + 29 br? + zo
I/Vib 1<i<m Z; 2°br? + z;
UP0<i<m |20 + zipm | 200" + 2im

Table 3. A secret-sharing scheme for NQR,,,.

the above distribution procedure should be independently repkdi®es, so that each party receiveslements

of Zp. In addition, the minimal authorized sets of size 2 should be taken care of separately, by independently
sharings among each such authorized pair (that is, for each such pair choose an independent rang@mdbit

give « to the first party andv @ s to the second}! This only adds a single bit to the size of each share. The
following analysis will mostly focus on the core of the scheme, as described in Table 3.

n fact, as in the previous construction this additional sharing is unnecessary for sets of tt{d/f@ﬂ'mvf }



Let SUM, ,, be the sum of them shares held by parties i, .
If ged(w,u) = 1 then (*w is a quadratic non-residue moduld)

If SUM,, ,, is quadratic residue modutothens = 0 elses = 1
If ged(w,u) # 1then

Letc = ged(w, u)

If c divides SUM,,, thens = 1 elses =0

Figure 1. Reconstruction Procedure for B, , in NQR,,,.

Statistical correctness. The minimal authorized sets of size 2 were explicitly taken care of in the above con-
struction. It thus remains to prove the correctness for a subsgt wherew is not a quadratic residue modulo

u. If r were chosen such thgtd(r, u) = 1 then the correctness would follow from similar arguments to those of

the proof forNQRP (that is, the secret is reconstructed by checking if the sum of shares is a quadratic residue).
However, since here is not fixed, we cannot guarantee that the above condition always holds. Nevertheless, this
already implies that the secret can be correctly reconstructed from the shares in Table 3 with a one-sided error
probability of at most — ¢(u)/u, which is bounded away from 1. The following tighter analysis shows that the
one-sided error probability of reconstruction can be as lotvasHence, withk independent repetitions the error
probability is at mos2—*. In Figure 1 we present the reconstruction procedure and then prove its correctness. The
following lemma can be verified by inspection of Table 3.

Lemma 4.4 For any0 < w,u < 2™ and secret € {0, 1}, it holds thatSUM,, ,, = r?w® + r'u (WhereSUM,, ,,
is the sum of them shares held by parties iB3,, ,,).

Note that by our choice of parameters, the expresstart + 7/« in Lemma 4.4 is always less than. We will
therefore treat this expression as being evaluated over the integers.

From now on, we assume that> 2 (the case that = 0 andw # 1 can be verified separately). Suppose
first thatged(w,u) = ¢ > 1. In this case¢ always divides-?w + r'u, whereas: dividesr? + ' if and only
if ¢ dividesr. Thus, with probability at least — 1/c > 1/2 it does not divider? + r'u. It follows that when
ged(w, u) > 1 the cases = 0 can be distinguished from the case= 1 with a one-sided error probability of at
most1/2, as described above.

Now suppose thab is a quadratic non-residue moduloin this casey? + r'u = 2 mod w is always a square
modulou. This implies that SUN} ,, is a quadratic residue when= 0. The following lemma shows that with
probability at least /2, this is not the case foPw + r'u, i.e., whens = 1.

Lemma 4.5 Suppose thatv is a quadratic non-residue modute (in particular, gcd(w,u) = 1). Then, the
probability thatr?w is a quadratic residue moduleis at mostl /2.

Proof: By the Chinese Remainder Theorem, a number is a quadratic-residue moifdad only if it is a
guadratic-residue modulo each prime power dividindg hus, there exists a prime powgt dividing « such that
w is a quadratic non-residue moduyi®. Now, if wr? is a square modulo, then it is also a square moduy8, and
so there existd such that{> = wr? mod p®. We argue that it must be the case thaividesr. Otherwise; has
an inverse modulp® andw = (d/r)? mod p® contradicting the fact that is a quadratic non-residue modui®.
The lemma follows by noting that the probability thadlividesr is at mostl /p < 1/2, as required. )

This concludes the analysis of the reconstruction procedure described above. Note that this reconstruction
procedure is computationally inefficient if the factorization.aé unknown.



Statistical privacy. We now prove the privacy of our construction. As before, it suffices to consider maximal
unauthorized sets of two types. The first type consists ofsetsch thatC| < 2m andC does not contain a pair
W2, W} orapairU?, U}l. For such a sef, it can be verified that the shares received by its parties are uniformly
and independently distributed ovE&l,, regardless of the secret

We turn to the more interesting case of aSet B,,,, such that: > 2 andw is a quadratic residue modulo
u. (The casess = 1 andu = 0,w = 1 can be verified separately.) When= 0 the shares are otherwise
random numbers whose sumrs+ 'u, and whens = 1 the shares are otherwise random integers whose sum is
r2w + r'u. Thus, it suffices to show that in this case @D+ r'u, r?w + r'u) = O(27%). We prove this using
the following lemmas. In the lemmas we denoterby the random variables used in the scheme (taking uniform
integral values from the intervals, 2] and[1, 23(+%)], respectively). For the proof we also use an additional
random variable,, which is a uniformly distributed integer i, « — 1].

Lemma 4.6 If w is a quadratic residue moduloa, then the distribution ofwr?2) mod u is identical to that of

2
ry; mod u.

Proof:  Sincew is a quadratic residue modulg there exist® such thatged(b,u) = 1 andb? = w mod u.
Sincewr? = (bry)? mod u, it suffices to show thatbr, ) mod « is identically distributed to, mod u = r,,.
Finally, sinceged(b,u) = 1, i.e.,b has an inverse module, then for every valug it holds thatPr[br, = 5] =

Pr[r, = (6/b)] = 1/u. O
Lemma 4.7 SD(r? mod u, 2 mod u) < 27%,

Proof:  Recall thatr is chosen uniformly from the interval, 27+*]. If u divides2™** then the above two
distributions are identical. Otherwise, the contribution of each [0, — 1] to this distance is at mogy2m+*,
and since: < 2™ the total contribution is at mogt” /2m+* = 2-F, )

From the previous two lemmas, we may conclude that
SD(wr? mod u, 7% mod u) = O(27F). (3)
Now, define the multisets
V= {wr2 modwu : 1 §r§2m+k}
and

Z:{r2 : 1§r§2m+k}.

Let Z' be a maximal multiset such tha&' C Z and Z’ mod v & {zmodu : z € Z'} C V. It follows
from Eq. (3) thatZ’| = (1 — O(27%))|Z|. DefineS = Z’' U (V \ (Z' mod u)). Note that|S| = |V| = 2m+*,
We will denote the elements &fby 4, . .., yom+x and the uniform distribution ove¥ by Y. It follows from the
above thal” satisfies: (1) SV, r2) = O(27%); (2) the distribution of” mod u is identicalto that ofar? mod u;
and (3)Y < 22(m+k),

We would like to conclude that Sr? + r'u, r2 + r'u) = O(27%). To this end, we use the following lemma.

Lemma 4.8 Let y, z be two integers in some intervél, M] such thaty = z mod u, and let R be uniformly
distributed in the intervall, M K]. Then,SD(y + Ru, z+ Ru) < 1/K.

Proof:  The statistical distance is bounded |py— z|/(uM K) < M/(uMK) < 1/K. O

We are now ready to complete the proof of privacy. From Property (Y) ibfollows that

SD(Y + r'u, % 4 r'u) = O(27F). 4)



From property (2) oft’, we may assume thgt = wr? mod u for everyl < r < 2™tk Letting M = 23m+2k
andK = 2%, bothY andwr? are no larger thai/, andr’ is uniform in[1, M K]. Since

SD(Y + 7'u, wr? + r'u) < E.[SD(y, + r'u, wr® 4 r'u)]

it follows from Lemma 4.8 that
SD(Y + r'u, wr? + 'u) < 27F, (5)

Combining Eq. (4) and Eq. (5) we get that 8% + r'u, r? + r'u) = O(27F), as required.

As explained above, to reduce the error probability in the reconstruction fy@no 2~* we share the secret
independently: times. By standard arguments, this can only increase the statistical distange/@), which is
still negligible ink.

4.1 A Perfectly Correct Scheme

In this section we show that under the Extended Riemann Hypothesis (abbreviated ERH), one can obtain a
variant of the above scheme whichpierfectlycorrect, though still only statistically private. (It is open if there is a
scheme with perfect correctness and privacy which efficiently reaNa@®..) The only required modification is
the choice of-: instead of choosing it uniformly from the intervl, 2™+*], it is chosen as a randoprime from
the interval[2™, 2m+*]. Sinceu < 2™, this guarantees thatis relatively prime tou, and this in turn is sufficient
to guarantee perfect correctness. We next argue that under the ERH, the resulting scheme is statistically private.

We will need the following results on the distribution of primes. For more information on this subject the reader
might consult, e.g., [5, Chapter 8]. For an integdet 7 (x) be the number of primes in the interJal «|, and for
integerse, w andu let 7(z, u, w) be the number of primes in the interJal x] that are congruent te mod w. It
is known thatr(x) ~ z/log z. If gcd(w, u) > 1 then every number that is congruenttanod « is a composite.

It turns out that the primes are nearly uniformly distributed among the other residue classes mdthdbis, if
ged(w, u) = 1 thenn(z, u, w) ~ ﬁx/log x, wherep(u) is the Euler function of..

We will need good bounds on the error terms in the above approximations. The bounds that can be proved
unconditionally are too crude for our purpose, and we will need bounds based on the the Extended Riemann
Hypothesis. Proving this famous hypothesis is one of the most important open questions in mathematics. We
will not formulate the statement of this hypothesis, and only state the following conclusion from the ERH. The
estimations that are used to derive the next theorem are presented in Appendix B.

Theorem 4.9 If the ERH holds angcd(w, u) = 1 then for every: andz’, whereu < 2’ < /z,

B log?
o).

where the constant in the “O” notation is an absolute constant independentaoid .

m(2, u,w) — m(2’,u,w) 1
m(z) — m(2) p(u)

Notice that”(x’z’(g::(ijsu’w) is the probability that a uniformly random prime in the interjél ] is congruent

to v modulow. Thus, the above theorem states that this probability is close to the probability that a uniformly
random element fronZ} is equal tow.

Corollary 4.10 Letu < 2™, U be a random variable distributed uniformly i, andr be a uniformly chosen
prime in the interval2™, 2"+¥]. If ERH holds then for every, m such thatk < 2m it holds thatSD(U, » mod
u) < 279F) and in particularSD(U? mod u, 72 mod u) < 2-k),



Proof:

SD(U, r mod u)
1
= 3 Z |Pr[U = y] — Pr[r mod u = y]|

yeZ
m 2
< o0 (%)

_ 2™ (m+k)*\ __om
= O< 20 5(m+k) >_2 :

The last equality holds sinde> 2m. a

To guarantee that the statistical distance decreases exponentially with the security paratepésrdently of
m, we execute the scheme with = max(k, 2m). Closely following the privacy proof of the previous protocol
(and replacing Lemma 4.7 with Corollary 4.10), one can show that the scheme is statistically privatg: yvith
29U=F) The next theorem summarizes the properties of this scheme.

Theorem 4.11 If ERH holds, then there exists a statistical secret-sharing schem™®R,,, with perfect cor-
rectness in which:

e the secret-domain i§0, 1};
e the share size of each party@&k + m);
e the privacy level ig(k) = 2~ 9(*),

4.2 Schemes fot-residuosity

The quadratic residuosity problem naturally generalizes ta-tesiduosity problem defined as follows. An
integerw is at-residue modulou if ged(w,u) = 1 and there exists an integérsuch thatw = b’ mod u.
The access structuM¢R is defined as the access structiN@R, with quadratic residuosity replaced h
residuosity.

A scheme foilNtR. can be obtained by the following small modification to the schem®&i@R.: the ring size
D is changed t@(t+2)m+(t+1k+1 the random string’ is chosen with uniform distribution fror, 2(t+D(+k)],
and in the dealer’s distribution procedure we repleccby ‘. The correctness and privacy of the modified scheme
are argued similarly to the original scheme. These modification also work in the scheme based on the ERH.

An interesting special case of the general scheme is whken. In the resultant schem&,, ,, can reconstruct
the secret iff the integers andu are not co-primes (i.eged(w, ) > 1). Hence, its access structure is computa-
tionally equivalent to the co-primality problem. Checking if two integers are co-prime is cledplyand it is not
known to be inNC. An important feature of this instance of the general construction is that it is computationally
efficient: indeed, reconstruction only requires checking:d(w, u) divides SUM, ,,.

5 Quasi-Linear Secret-Sharing

In this section we study a natural extension of the class of linear secret-sharing schemes to whajuasicall
linear schemes. Quasi-linear schemes are obtainedmposing finite number of linear secret-sharing schemes,
possibly over different fields.

Towards defining quasi-linear schemes, it will be convenient to use the following notation for extending the
secret-domain of a given secret-sharing scheme to an arbitrarily large finite domain.



Definition 5.1 LetII be a secret-sharing scheme with secret-dontaamd share-domainSy, ..., S,_1, letT =
{0,1,...,[T[ — 1} be any finite secret-domain, and let [log g |T'[]. Then, byil; we denote the randomized
mapping fromT to S§ x --- x S¢_, defined as follows. For a secretc T, let (¢4, . ..,t,) denote its basés|
representation, wherg e S for all i. The output ofI(¢) is obtained by independently applyifigto eacht; and
letting thei-th entry of the output be the concatenation of#l entries from the outputs ofII.

As can be easily seef]; defines a secret-sharing scheme realizing the same access strudijreviasse
secret-domain i§” and whose share-complexityds= [logg |T'|] times that ofil. We are now ready to formally
define the notion of quasi-linear schemes.

Definition 5.2 Ann-party quasi-linear secret-sharing scheme is recursively defined as follows:

1. Anyn-party linear secret-sharing scheme is afparty quasi-linear scheme.

2. Suppose thall is an n’-party linear scheme over a fiel## with share-domainssy, ..., S,/_1, and let
I1°, ..., II""~! ben-party quasi-linear schemes. Then, defineiguarty quasi-linear schemi@(I1°, . . ., 11"’ 1)
with secret-domairf’ as follows. To share € F, first applyIl(s) to obtain sharesy, ..., s, 1. Then,

identifying each share-domais} with the set{0, 1,...,|S;| — 1}, independently share eash among the
n parties usindl .

Itis convenient to view an-party quasi-linear scheniéas a tree, in which every node contains a linear secret-
sharing scheme. Associating each linear scheme with its corresponding monotone span program, we may view
this tree as a Boolean formula; over the basis of all monotone span programs (over all finite fifds)at is,
each gate in the formula computes the Boolean function computed by a monotone span program. For brevity we
refer to such a formula as anSP-formula

The following proposition establishes the correspondence between a quasi-linear scheme and its associatec
MSP-formula. Its straightforward proof, generalizing the proof for the AND-OR-Threshold formula construction
from [11], is omitted from this abstract.

Proposition 5.3 LetII be a quasi-linear secret-sharing scheme angbe the corresponding MSP-formula. Then,
IT realizes the access structure computedohy

Are quasi-linear schemes strictly stronger than linear schemes, or can every quasi-linear scheme be simulated
by a linear scheme with a polynomial complexity overhead? Given the current understanding of monotone span
program complexity, no conclusive answer can be obtained. However, under the plausible assumption that the
power of monotone span programs over fields of different characteristics is incomparable, quasi-linear schemes
are indeed (super-polynomially) stronger. This unsurprising observation can be formally argued by embedding
two or more monotone span programs over different fields as restrictions of one efficient MSP-formula. For
instance, suppose th#t(respectivelyg) can be efficiently computed by a monotone span program ové2)GF
(resp., GF3)), but hasn“(!) monotone span program size over any field whose characteristic is different from 2
(resp., 3). Then, the function= (y A f) V (z A g), where the variableg, = appear neither iff nor in g, can be
efficiently realized by a quasi-linear scheme, but cannot be efficiently realized by any linear scheme.

However, as we show next, quasi-linear schemes cannot be too powerful. More specifically, if there is an
efficient quasi-linear scheme fgr then f can be computed by a shallow circuit. The idea of the proof is to
consider the corresponding MSP-formyta We use a result of [7] showing that a formulaover a general
basis can be “balanced” to obtain an equivalent formula whose depth is small and its size is not too big (this is
a generalization of the well-known result from [51] for bounded fan-in formulae over the standard basis). An
instantiation of this result which is useful for our purposes is quoted in the following lemma.

12An input variable is viewed as a size-1 monotone span program in the variables , z,,_; returning its value.



Lemma 5.4 (Beigel and Fu [7]) Let ¢ be a MSP-formula. Then, there exists a MSP-formuksuch that: (1)p
computes the same function @s(2) the depth of is O(log(size(y))); (3) the size ofp is size(p)°); and (4)
each node o is either labeled by some span program appearingjror is labeled by an AND, OR, or NOT
gate.

Theorem 5.5 Suppose thaf is efficiently realized by quasi-linear schemes. Thea, NC*.

Proof:  LetII be an efficient quasi-linear scheme realizifigand lety be the corresponding MSP-formula.
We may assume without loss of generality that the span program labelingnéeictal node ofy depends on all
of its inputs, and has at least two inputs; otherwlibeould be simplified into a quasi-linear scheiiewhose
MSP-formulay’ satisfies this property. As the number of leaves in sughi@a lower bound on the complexity
of IT (and the degree of each internal nodeyofs at least 2),» must be of size polyn). It also follows that
each node of ¢ must be labeled by polynomial-sizenonotone span prograit, over a field GFg,) such that
log ¢, = poly(n).1® By Lemma 2.6, the functiorf, computed byM, can be simulated by a Boolean circuit of
size polyn) and depthO(log® n). The theorem follows by applying Lemma 5.4¢cand replacing each node in
¢ by a correspondindy C? circuit. )

We conclude this section by showing an application of quasi-linear schemes for the construction of secret-
sharing schemes efficiently realizing monotone span programs over Zfinghereu is a square-free compos-
ite 14

Theorem 5.6 Let M be a monotone span program o\&y, whereu is the product of: distinct primey, . . ., pk.
Then, there exists a quasi-linear schelhg realizing the access structure definedy whose share-complexity

is size(M) - Z§:1 log p;.

Proof: Il is defined by the following depth-2 MSP-formuta,. The root contains an AND gate with fan-in
k (represented by a sizemonotone span program over &F). Thej-th leave,1 < j < k, contains a monotone
span program/; over GHp;), obtained from\/ by reducing each of its entries modylg. By Proposition 5.3,
to prove thatll,; indeed realizes the access structure defined/bit suffices to show thap,, computes the
same function ad/. Indeed, ifM(xz) = 1, then clearly)M;(z) = 1 for all j (as witnessed by the same linear
combination, modulg;). The converse follows by applying the Chinese Remainder Theorem tb linear
combination vectors witnessing thaf; (z) = 1,1 < j < k. O

Example 5.7 Figure 2 shows an efficient span program oigrfor testing whether the input (viewed as an
integer) is co-prime ta.. Replacing each negative literal with a new variable, this example gives a very efficient
quasi-linear scheme for a monotone access structure derived from the co-primality pfeblem.

6 Open Problems
The main open problem in this area remains that of characterizing the class of access structures admitting

efficient secret-sharing. A more modest problem is to obtaimraonditionalseparation between the access
structures which can be efficiently realized by linear schemes and those efficiently realized by general (nonlinear)

13The converse does not hold. Itis easy to construct a polynomial-size MSP-formula (even a shallow one) which is efficient in this sense,
but whose corresponding quasi-linear scheme is inefficient.

14Span programs over rings are defined in a completely analogous way to span programs over fields.

BwWhetherz is co-prime tou can be tested ilNC! given an advice depending an(namely, its factorization). Hence, there exist
efficient linear secret-sharing schemes for this access structure. Still, the exact efficiency of the quasi-linear scheme is much better. See
Example A.2 for an efficient nonlinear realization which does not rely on the factorizatien of



Zo 0 1 0 0 .--- 0
) 1 1 0 0 .--- 0
Z1 0 -1 1 0 --- O
1 2 -1 1 0 --- 0
Tn—2 0 0 0O -1 1
Tp_o | 272 0 0 -1 1
Tn_1 0 0 0O 0 -1
Tpo1 | 2710 0O 0 -1
target| 1 0 0O 0 O

Figure 2. A span program over  Z,, testing whether ged(z,u) = 1.

schemes. As indicated in Section 5, it suffices to prove strong separations between monotone span program
complexity over fields of different characteristics.

We next suggest a candidate for a function that has a small monotone span program @year@rloes not
have small monotone span program over fields of different characteristic. The candidate is the ODD-FACTOR
function considered in [2]: The function has= v? variables; the input is a bipartite graph witlvertices in each
part represented by @, 1)-matrix of sizev x v. The graph is accepted if it has an odd factor, i.e., a spanning
subgraph such that all vertices have odd degree in the subgraph. Bahaan@ Wigderson [2] prove that this
function has a small monotone span program ovef2gbut has only exponential monotone formulae and quasi-
polynomial monotone circuits. The open problem is whether the ODD-FACTOR function has small monotone
span program over fields of a different characteristic.
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A A Generalization of the Scheme from Section 3

In this section we show how to generalize the schemaN@QRP to similar access structures. This gener-
alization will uncover what algebraic properties we use in our construction, and will supply us with a few more
examples.

Let R = (A, +, ) be a finite ring and3 C A \ {0} be such that; = (B, %) is a group'® In the sequence
all arithmetic operations involving ring elements are performed in the ring. We assuntesthai 0 for every
a € R\ {0}. We Define the access structudlg; ¢ in a similar way tatNQRP.

Definition A.1 (The access structuredr ) Letm £ |log |R||. We define the-party access structurelr ¢,

wheren £ 2m, by specifying its collection of minimal sets. With an integex {0, 1}"" we naturally associate a

setB,, of sizem defined by:
def

By E{BY:0<i<m}.
A setB is a minimal set ofA g ¢ if:
e B={P? P!} forsome) <i<m,or
e B = B, for somew € {0,1}" such thatw ¢ G.

We next show haw to generalize the schemeN@RP to a scheme fod .

15We even do not need all the properties of these algebraic structures.



Distribution. The dealer chooses at randem— 1 random elementsy, z1,. .., zm—2 € R and an additional
random element € G. Definez,, ; = — Z;’;‘Oz z;. The shares of the parties are specified in Table 4.

| 0] =1
Pé’ r—+z| br—+z
Pib1§i<m Zi 2°br + z;

Table 4. A secret-sharing scheme for  Apr .

The reconstruction is similar to the scheme MQRP, where if B = B,, for somew ¢ G, thens = 0 iff
SUM,, € G. The correctness of this rule follows from the fact thabi## G andb € G thenw b ¢ G.

For the security, we only consider the case whére- B,, for somew € G. (The first case is identical to
the scheme foNQRP.) In this case we claim that, regardless of the value of the secret, the vector-share of the
parties inC' is a random vector such that SUMe G. This is clearly true wher = 0. Whens = 1, the sum
SUM,, isr Z;Z‘Ol w;2° = rw, and since- is a random element af andw has an inverse i, the product is a
random element of7.

We next show a few examples of access structures.

Example A.2 Let N be a positive integetR = (Zy,+, %), andG = (25, ). In this case, an efficient linear
scheme forAp ¢ exists (see Footnote 15). A quasi-linear scheme for this access structure is described in Ex-
ample 5.7. However, both the linear and the quasi-linear schemes require knowing the factorizafio lod
nonlinear scheme does not require knowledge of the factorization, and all the computations involved are efficient.

Example A.3 Letp be aprimeR = (Z2,+,%), B = {w € Zp :wPt =1 mod p2}, andG = (B, ). In this
case we do not know if there is a quasi-linear schemetfgy;, or even if A ¢ is in NC.

B Explicit Estimates implied by ERH

The next theorem gives explicit bounds on the error term in the approximation of the distribution of the primes.

Theorem B.1 Letli(z) & [* 9t |f the ERH holds then far > 2657:
5

logt*®

x < 7(z) < x [5, Theorem 8.8.1]
_ (X _ , .8.
logx + 2 logx —4

|m(z) —li(x)] < +xlogz/8m [5, Page 249]

If ERH holds andscd(w, u) = 1 then[5, Theorem 8.8.18]

< Vz(logz + 2logu).



