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Abstract

A secret-sharing schemeenables a dealer to distribute a secret amongn parties such that only some predefined
authorized sets of parties will be able to reconstruct the secret from their shares. The (monotone) collection of
authorized sets is called anaccess structure, and is freely identified with its characteristic monotone function
f : {0, 1}n → {0, 1}. A family of secret-sharing schemes is calledefficient if the total length of then shares
is polynomial inn. Most previously known secret-sharing schemes belonged to a class oflinearschemes, whose
complexity coincides with themonotone span programsize of their access structure. Prior to this work there was
no evidence that nonlinear schemes can be significantly more efficient than linear schemes, and in particular there
were no candidates for schemes efficiently realizing access structures which do not lie inNC.

The main contribution of this work is the construction of two efficient nonlinear schemes: (1) A scheme with
perfect privacy whose access structure is conjectured not to lie inNC; (2) A scheme with statistical privacy whose
access structure is conjectured not to lie inP/poly. Another contribution is the study of a class of nonlinear
schemes, termedquasi-linearschemes, obtained bycomposinglinear schemes over different fields. We show that
while these schemes are possibly (super-polynomially) more powerful than linear schemes, they cannot efficiently
realize access structures outsideNC.

1 Introduction

Secret-sharing schemes enable a dealer, holding a secret piece of information, to distribute this secret among
n parties such that only some predefined authorized subsets of parties can reconstruct the secret from their shares
and others learn nothing about it. The (monotone) collection of authorized sets that can reconstruct the secret is
called anaccess structure, and is freely identified with its characteristic monotone functionf : {0, 1}n → {0, 1}.

The first secret-sharing schemes were introduced by Blakley [14] and Shamir [48]. They constructedthreshold
schemes, in which the access structure is defined by a threshold function. General secret-sharing schemes, real-
izing non-threshold access structures, were introduced by Ito, Saito, and Nishizeki [41], where it was shown that
every monotone access structure can be (inefficiently) realized by a secret-sharing scheme. More efficient schemes
for specific types of access structures were presented, e.g., in [11, 50, 18, 42]. We refer the reader to [49, 52] for
∗This paper was accepted for publication in the proceedings of the 16th Annu. IEEE Conf. on Computational Complexity, 2001.



extensive surveys on secret-sharing literature.1

Originally motivated by the problem of secure information storage, secret-sharing schemes have found numer-
ous other applications in cryptography and distributed computing (cf. [46, 10, 23, 25, 28]). However, secret-sharing
is independently interesting as a pure complexity question. The default complexity measure of secret-sharing
schemes is theirshare size, i.e., the total length of all shares distributed by the dealer. This is a measure of the
amount of communication (or storage) required for sharing a secret.2 One of the most interesting open questions in
this area is to characterize which access structures can beefficientlyrealized, i.e., with shares of polynomial size in
the number of partiesn. For most access structures, the best known upper bound on the share size is exponential.
However, unlike other concrete complexity measures such as circuit complexity, one cannot apply simple counting
arguments to show that this must indeed be the case. In fact, given the current knowledge, one cannot even rule
out the possibility thatall access structures can be efficiently realized.

Several lower bounds on the share size of secret-sharing were obtained [22, 15, 30, 27, 26]. The strongest
current bound isΩ(n2/ log n) [26]. This bound applies to anexplicit access structure. However, as noted above,
there is a huge gap between these lower bounds and the best known upper bounds.

1.1 Linear vs. Nonlinear Secret-Sharing

Most previously known secret-sharing schemes werelinear. In a linear scheme, the secret is viewed as an
element of a finite fieldF , and the shares are obtained by applying a linear mapping to the secret and several
independent random field elements. Linear schemes may be equivalently defined by requiring that each authorized
set reconstructs the secret by applying a linear function to its shares [8]. For example, the schemes of [48, 14, 41,
11, 50, 18, 42, 31] are all linear.

The share size in linear schemes overF realizing a monotone functionf is proportional to themonotone span
programsize off overF . (Span programs are a linear-algebraic model of computation introduced in [42].) In
fact, there is a one-to-one correspondence between linear secret-sharing schemes and monotone span programs.
The class of functions that have polynomial size monotone span programs, which coincides with those admitting
efficient linear secret-sharing schemes, is fairly well understood: (1) it contains monotoneNC1 and even monotone
symmetric logspace [11, 12, 42]; (2) it is contained in algebraicNC2 (as follows from [13, 17, 45, 21]), implying
that it is contained inNC3 whenlog |F | is polynomially bounded; and (3) there are explicit monotone functions
that are provably not in this class [9, 2, 35].

As opposed to linear secret-sharing schemes, nearly nothing is known for general (i.e., possibly nonlinear)
schemes. Several constructions of nonlinear secret-sharing schemes have been suggested, both for the threshold
case [55, 29, 47] and for general access structures [19, 33]. The question of basing verifiable secret-sharing and se-
cure multi-party computation on nonlinear secret-sharing has been recently studied in [24]. However, none of these
works provides evidence that nonlinear schemes are significantly more powerful than their linear counterparts.

The relation between linear and nonlinear complexity has been studied in other contexts, such as coding and
randomness extraction (cf. [54]). While in some of these contexts the margins of possible improvement obtained
by relaxing the linearity restriction are provably small, this is not the case for our problem. As discussed above,
it is not even known if there exists an access structure thatcannotbe efficiently realized by a nonlinear scheme.
On the other hand, prior to this work there was no evidence that nonlinear schemes are significantly more efficient
than linear schemes. In particular, there were no explicit candidates for secret-sharing schemes realizing access
structures which do not lie inNC.

1Similarly to almost all of the vast literature on secret-sharing, this work is concerned with theinformation-theoreticvariant of the
problem. A relaxed notion ofcomputationally-secure secret-sharing has been considered in [43, 6].

2By default, we ignore thecomputationalcomplexity of the scheme. However, most of our efficient constructions are also computa-
tionally efficient. We explicitly indicate when this is not the case.



1.2 Our Results

We attempt to remedy the above state of affairs. To this end, we take two different approaches.

Specific candidates. The main contribution of this work is the construction of specific efficient nonlinear schemes,
whose access structures are conjectured to be hard. We present two main schemes, whose access structures are
related to two variants of the quadratic residuosity problem.3 A third scheme, which is a simplified version of the
second, realizes an access structure related to the co-primality problem.4

The first scheme realizes an access structure whose computational complexity is equivalent to that of deciding
quadratic residuosity modulo afixedprime, where the prime modulus may depend only on the number of parties.5

This problem is not known to be inNC. In particular, assuming that it is indeed not inNC, a separation of efficient
nonlinear schemes from efficient linear schemes follows.

The second scheme realizes a presumably much harder access structure, whose computational complexity is
equivalent to the general quadratic residuosity problem. The latter is widely conjectured to require exponential-
size circuits, and its intractability is implied by the so-calledQuadratic Residuosity Assumption[37], which is
commonly relied on in cryptography. In contrast to the first construction, the second construction only meets a
more liberal notion of secret-sharing (with a statistical relaxation of the perfect correctness and privacy require-
ments, see Section 2), and its reconstruction procedure is computationally inefficient. Yet, the second scheme
demonstrates that the share size in a secret-sharing scheme may be super-polynomially smaller than the circuit
size of its access structure.

As a variant of the second scheme described above, we obtain a scheme whose access structure is equivalent to
the co-primality problem. Similarly to quadratic residuosity modulo a (fixed) prime, the co-primality problem is in
P but is not known to be inNC. The third scheme meets only the more liberal notion of security. However, unlike
the second scheme it is also computationally efficient. Compared to the first scheme, the co-primality problem is
more standard than the problem of deciding quadratic residuosity modulo afixedprime. The main properties of
the three schemes described above are summarized in Table 1.

perfect/ access structure comput.
section statistical related to. . . efficient?

§3 perfect
quadratic residuosity
modulo a fixed prime

yes

§4 statistical quadratic residuosity no
§4.2 statistical co-primality yes

Table 1. Summary of Our Main Schemes.

Our constructions were inspired by a non-interactive private protocol for the quadratic residuosity problem
from [34]. In fact, every protocol in the model of [34, 40] can be transformed into a secret-sharing scheme for
a related access structure. In the context of communication complexity lower bounds, the quadratic residuosity
problem has been used in [4, 3].

Quasi-linear schemes. In addition to the above specific candidates, we study the class of nonlinear schemes
obtained bycomposinglinear schemes over (possibly) different fields, which we termquasi-linearschemes. Com-
position of secret-sharing schemes has been used in previous works (cf. [11, 20, 53, 44, 25]). However, to the best

3The quadratic residuosity problem is that of deciding, given a pair of integersw, u, whetherw is a square modulou.
4The co-primality problem is that of deciding, givenw, u, whethergcd(w, u) = 1.
5While a generalization to quadratic residuosity modulo afixedcomposite is possible, this problem is essentially equivalent in a non-

uniform setting to deciding quadratic residuosity modulo a fixed prime.



of our knowledge this is the first work to explicitly discuss compositions of linear schemes over different fields.
We characterize the complexity of quasi-linear schemes in terms of Boolean formulas over the basis of monotone
span programs. While quasi-linear schemes are likely to be strictly more powerful than linear schemes, we prove
that they cannot realize any access structure outsideNC. Specifically, we show that the class of structures which
they can efficiently realize is contained inNC4. Thus, quasi-linear schemes do not provide the strong (conjec-
tured) results implied by the specific candidates described above. On a positive note, we show an application of
quasi-linear schemes for the construction of secret-sharing schemes efficiently realizing monotone span programs
over a ringZu, whereu is a square-free composite. A naive generalization of the construction for monotone span
programs overfields[42] fails to achieve this goal.6

ORGANIZATION . In Section 2 we present some definitions and background. In Sections 3 and 4 we describe our
two main constructions of efficient nonlinear schemes, and discuss the complexity of their access structures. In
Section 5 we introduce and study the class of quasi-linear schemes. Finally, in Section 6 we mention some open
problems.

2 Preliminaries

In this section we define secret-sharing schemes, linear schemes, and span programs, and briefly discuss the
connections between these notions. We end this section with some definitions related to the quadratic residuosity
problem.

Definition 2.1 (Access Structure)Let {P0, . . . , Pn−1} be a set of parties. A collectionA ⊆ 2{P0,...,Pn−1} is
monotoneif B ∈ A andB ⊆ C implyC ∈ A. An access structureis a monotone collectionA of non-empty
subsets of{P0, . . . , Pn−1} (that is,A ⊆ 2{P0,...,Pn−1} \ {∅}). The sets inA are called theauthorized sets. A set
B is called aminimal setof A if B ∈ A, and for everyC 6⊆ B it holds thatC 6∈ A. The minimal sets of an
access structure uniquely define it. Finally, we freely identify an access structure with its monotone characteristic
functionfA : {0, 1}n → {0, 1}, whose variables are denotedx0, . . . , xn−1.

Definition 2.2 (Secret-Sharing)LetS be a finite set of secrets, where|S| ≥ 2. Ann-partysecret-sharing scheme
Π with secret-domainS is a randomized mapping fromS to a set ofn-tuplesS0 × S1 × . . . × Sn−1, whereSi is
called theshare-domainof Pi. A dealer distributes a secrets ∈ S according toΠ by first sampling a vector of
shares(s0, . . . , sn−1) from Π(s), and then privately communicating each sharesi to the partyPi. We say thatΠ
realizesan access structureA ⊆ 2{P0,...,Pn−1} (or the corresponding monotone functionfA : {0, 1}n → {0, 1}) if
the following two requirements hold:

Correctness. The secrets can be reconstructed by any authorized subset of parties. That is, for any subsetB ∈ A
(whereB = {Pi1 , . . . , Pi|B|}), there exists areconstruction functionRecB : Si1 × . . . × Si|B| → S such
that for everys ∈ S,

Pr[ RecB(Π(s)B) = s ] = 1,

whereΠ(s)B denotes the restriction ofΠ(s) to itsB-entries.

Privacy. Every unauthorized subset cannot learn anything about the secret (in the information theoretic sense)
from their shares. Formally, for any subsetC 6∈ A, for every two secretsa, b ∈ S, and for every possible
shares〈si〉Pi∈C :

Pr[ Π(a)C = 〈si〉Pi∈C ] = Pr[ Π(b)C = 〈si〉Pi∈C ].

6This result does not follow from [33], who impose stronger requirements in their definition of span programs over rings.



Theshare complexityof the scheme (orcomplexityfor short) is defined as
∑n−1
i=0 log |Si|.

The above correctness and privacy requirements capture the strict notion ofperfectsecret-sharing, which is the
one most commonly referred to in the secret-sharing literature. We will also consider a relaxed but natural notion
of statisticalsecret-sharing, in whichΠ accepts an additional argumentk, called thesecurity parameter, and the
perfect correctness and privacy requirements are relaxed tostatistical correctnessandstatistical privacy, defined
as follows.

Statistical correctness.Any authorized subset of parties can reconstruct the secrets except withnegligibleprob-
ability ε(k). That is, for every authorizedB ∈ A there exists a reconstruction functionRecB such that

Pr[ RecB(Π(s)B) = s ] ≥ 1− ε(k) (1)

for someε(k) ∈ k−ω(1).

Statistical privacy. Any unauthorized subset of parties learns only a negligible amount of information about the
secret. That is, for any unauthorizedC 6∈ A and two secretsa, b ∈ S,

SD(Π(a, k)C ,Π(b, k)C) ≤ ε(k) (2)

for someε(k) ∈ k−ω(1), whereSD(Y0, Y1) denotes thestatistical distancebetween distributionsY0, Y1 and
is defined bySD(Y0, Y1) = 1

2

∑
y |Pr[Y0 = y]− Pr[Y1 = y]|.7

We next define the class oflinear secret-sharing schemes. There are several equivalent definition for these
schemes, see [8].

Definition 2.3 (Linear Secret-Sharing) Let F be a finite field. A secret-sharing schemeΠ is said to belinear
overF if:

1. The secret-domainS is a subset ofF .

2. There existd0, . . . , dn−1 such that each share-domainSi is a subset of the vector spaceF di .

3. The randomized mappingΠ can be computed as follows. First, the dealer chooses independent random
variables, denotedr1, . . . , r`, each uniformly distributed overF . Then, each coordinate of each of then
shares is obtained by taking alinear combinationof r1, . . . , r` and the secrets.

We remark that the notions of perfect secret-sharing and statistical secret-sharing coincide in the case of linear
schemes: Any linear scheme that satisfies the weaker conditions of statistical correctness and privacy satisfies the
stronger requirements of perfect correctness and privacy.

As for any other concrete complexity measure, we will often implicitly use the term “scheme” for referring to an
infinite family of schemes{Πn}n∈N , parameterized by the number of partiesn. In the statistical case, we require
the same negligible functionε(k) to apply in Equations (1) and (2) for allΠn in the family. In the linear case, such
a family can have a different underlying field for eachn. A family {Πn}n∈N is efficientif the complexity ofΠn is
polynomial inn (or the complexity ofΠn(k) is polynomial inn andk in the statistical case). Note that the above
definition does not make any requirement on the computational complexity of the scheme. We say that the scheme
is computationally efficientif both sharing the secret and reconstructing it can be done in time poly(n,k,log |S|).
Finally, the family of access structures{An} realized by a scheme family{Πn} is naturally identified with a
monotone Boolean functionf : {0, 1}∗ → {0, 1} or its characteristic language.

We next define span programs – a linear algebraic model of computation whose monotone version is equivalent
to linear secret-sharing.

7Equivalently, the statistical distance betweenY0 andY1 may be defined as the maximum, over all functionsA, of thedistinguishing
advantage|Pr[A(Y0) = 1]− Pr[A(Y1) = 1]|.



Definition 2.4 (Span Program [42]) A span programover a fieldF is a triplet M̂ = 〈M,ρ,~v〉, whereM is an
r × c matrix overF , the vector~v ∈ F c is a non-zero row vector called thetarget vector, andρ is a labeling of the
rows ofM by literals from{x0, x̄0, . . . , xn−1, x̄n−1} (every row is labeled by one literal, and the same literal can
label many rows). A span program̂M is said to bemonotoneif all of its rows are labeled by positive literals.

A span program accepts or rejects an input by the following criterion. For every inputy ∈ {0, 1}n let My

denote the sub-matrix ofM consisting of those rows whose labels are satisfied by the assignmenty. The span
programM̂ acceptsy if and only if ~v is in the row-span ofMy (where each row ofM is viewed as a vector inF c).
A span programcomputesa Boolean functionf : {0, 1}n → {0, 1} if it accepts exactly those inputsy such that
f(y) = 1. Note that monotone span programs compute monotone functions. Finally, thesizeof M̂ is the number
of rows in M .

The complexity of realizing a given access structure by a linear secret-sharing scheme overF is proportional to
the minimal size of a monotone span program overF computingf . Specifically,

Lemma 2.5 ([42, 8]) An access structure can be realized by a linear secret-sharing scheme overF in which the
shares include a total ofd field elements if and only if it can be computed by a monotone span program overF of
sized.

It follows from [13, 17, 45, 21] that all functions that have small span programs are inNC. Specifically,

Lemma 2.6 If a functionf has a span program overF = GF(q) of size`, thenf has an arithmetic circuit of
sizepoly(`) and depthO(log2 `) overF , implying that it has a Boolean circuit of sizepoly(`, log q) and depth
O(log2 ` log log q).

Quadratic Residues. Let Zu be the ring of integers modulou, whose elements are identified with the integers
{0, 1, . . . , u− 1}. LetZ∗u denote the multiplicative group of the elements ofZu that are relatively prime tou, that
is, the elements ofZ∗u are{1 ≤ w < u : gcd(w, u) = 1}. The number of element inZ∗u is denoted byϕ(u), and
is referred to as the Euler function ofu.

An integerw is said to be aquadratic residuemodulou if gcd(w, u) = 1 and there exists an integerb such
thatw ≡ b2 mod u. It is said to be aquadratic non-residuemodulou if gcd(w, u) = 1 and there is no integerb
such thatw ≡ b2 mod u. We will pay particular attention to the case where the modulus is an odd primep; thus,
w andb may be viewed as elements of the fieldZp. In this case,w ∈ Z∗p = Zp \ {0} is said to be a quadratic
residue if it is a square of some field element, and aquadratic non-residueotherwise. (The element0 is neither a
quadratic residue nor a quadratic non-residue.) The number of quadratic residues modulop is equal to the number
of quadratic non-residues and is(p−1)/2. The quadratic residues form a subgroup of the multiplicative groupZ∗p .
Thequadratic residuosity problemis that of deciding, givenw andu, whetherw is a quadratic residue modulou.
Whenu is restricted to be a prime (or given the factorization ofu) this problem can be solved in polynomial time,
but is not known to have an efficientparallel algorithm. Whenu is arbitrary, this problem is widely assumed to be
intractable. See Section 3.1 for more details.

3 An Efficient Nonlinear Scheme: The Perfect Case

In this section we construct an efficient nonlinear secret-sharing scheme whose access structure is conjectured
not to lie in NC. The scheme constructed in this section isperfectlyprivate and correct. Astatisticalscheme
realizing a computationally harder access structure will be given in the next section.

Definition 3.1 (The Access StructureNQRPp) Letp be an odd prime andm
def= blog pc. We define then-party

access structureNQRPp, wheren
def= 2m, by specifying its collection of minimal sets. The parties of the access



structure are denoted byP bi , where0 ≤ i < m andb ∈ {0, 1}. With eachw ∈ {0, 1}m (also viewed as anm-bit

integer) we naturally associate a setBw of sizem defined by:Bw
def= {Pwii : 0 ≤ i < m}. A setB is a minimal

set ofNQRPp if:

• B =
{
P 0
i , P

1
i

}
for some0 ≤ i < m, or:

• B = Bw for somew such thatw is not a quadratic residue modulop. (That is, it is either0 or a quadratic
non-residue.)

We letNQRP denote a family of access structures such that then-th structure isNQRPp for somep such that
blog pc = bn/2c (say, the least suchp).8

We next construct a secret-sharing scheme forNQRP.

Theorem 3.2 For every odd primep there exists a perfect secret-sharing scheme forNQRPp in which the secret-
domain is{0, 1} and the share-domain of each party isZp.

Proof: We prove this theorem by describing the secret-sharing scheme.
The dealer chooses at randomm−1 random elementsz0, z1, . . . , zm−2 ∈ Zp and an additional random element

r ∈ Z∗p . Definezm−1
def= −

∑m−2
i=0 zi, where here and in the following all arithmetic operations involving ring

elements are performed inZp. The shares of the parties are specified in Table 2. We turn to prove that this secret-

s = 0 s = 1
P b0 r2 + z0 br2 + z0

P bi 1 ≤ i < m zi 2ibr2 + zi

Table 2. A secret-sharing scheme for NQRPp.

sharing scheme satisfies the correctness and privacy properties with respect toNQRPp. Let SUMw denote the
sum of them shares held by parties inBw. Both the correctness and the privacy proofs will rely on the following
lemma.

Lemma 3.3 SUMw = wsr2.

Proof:

- If s = 0 then

SUMw =
m−1∑
i=0

zi + r2 = r2.

- If s = 1 then

SUMw =
m−1∑
i=0

(zi + wi2ir2)

=
m−1∑
i=0

zi + r2
m−1∑
i=0

(wi2i)

= r2w.

2

8To make the access structure ZPP-uniform,p can be chosen to be the least prime in the interval[2dn/2e, 2dn/2e + n], or 3 if none
exists. However, as for other number-theoretic functions, a random choice ofp may be safer when assuming thatNQRP is not inNC.



Correctness. We separately consider two types of minimal authorized setsB:

• B =
{
P 0
i , P

1
i

}
for some0 ≤ i < m. In this case,s = 0 iff the shares ofP 0

i andP 1
i are equal. This follows

from the fact that2ir2 6≡ 0 mod p for everyi.

• B = Bw for somew such thatw is not a quadratic residue. In this case, it follows from Lemma 3.3 that
s = 0 iff SUMw is a quadratic residue (since the product of a quadratic residue and a non quadratic residue
is a non quadratic residue).

Privacy. We need to prove that every unauthorized subsetC /∈ NQRPp has no information on the secret. It
suffices to prove this claim for everymaximalC not in the access structure. There are two cases to consider.

• C = Bw \
{
P
wj
j

}
for somew ∈ {0, 1}m and0 ≤ j < m. That is,C is a set of sizem − 1 such that for

exactly onej it contains neitherP 0
j norP 1

j . We claim that in this case the share-vector of the parties inC is
uniformly distributed inZm−1

p , regardless of the secret. It suffices to show that for every secrets ∈ {0, 1},
every possible value of the share-vector fromZm−1

p , and every fixedr0 ∈ Z∗p , there exists a unique choice
of z0, . . . , zm−2 generating this value withr = r0. This can be verified by inspection of the corresponding
system of linear equations overZp.

• C = Bw for somew ∈ {0, 1}m such thatw is a quadratic residue. In this case we claim that, regardless
of the value of the secret, the share-vector of the parties inC is uniformly distributed over them-tuples of
field elements whose sum is a quadratic residue. Indeed, by Lemma 3.3, ifs = 0 then SUMw = r2, which
is a uniformly random quadratic residue. Furthermore, fixing the choice ofr, the choices ofzi induce a
uniformly random share vector among all those which sum tor2. Similarly, if s = 1 then SUMw = r2w.
Sincew is a quadratic residue, SUMw is again a uniformly random quadratic residue determined byr, and
the same argument as above applies.

2

A generalization of our construction forNQRP is described in Appendix A.

3.1 DoesNQRP Have an Efficient Linear Secret-Sharing Scheme?

The access structureNQRP we have realized above is related to the problem of deciding quadratic residuosity
modulo a prime. We would like to argue thatNQRP is likely not to be inNC, which would imply in particular
thatNQRP cannot be efficiently realized by linear schemes. We start by describing some known facts about the
complexity of the quadratic residuosity problem.

Unlike quadratic residuosity modulo a composite, whose intractability is commonly assumed in cryptography
(see [37]), quadratic residuosity modulo a prime can be decided in polynomial time. All known algorithms for this
problem are sequential. It is not known if efficient parallel algorithms for this problem exist; that is, the situation
is similar to the exponentiation function and the gcd function. There are two types of known algorithms. The first
uses Euler’s criterion, which states thatw is a quadratic residue modulo an odd primep iff w(p−1)/2 ≡ 1 mod p.
Thus, this algorithm requires modular exponentiation. For a survey of algorithms for exponentiation see [38]. The
second type of algorithm computes the Jacobi symbol in a way similar to Euclid’s algorithm for computing the
gcd. For more details see, e.g., [5, Chapter 5]. “Weak” parallel algorithms for checking quadratic residuosity
follow from the algorithms of [32] for computing the Jacobi symbol and the algorithm of [1] for exponentiation.
More precisely, there is (1) an algorithm that runs inO(n/ log log n) time usingO(n1+ε) processors [32]; (2)
an algorithm that runs inO(log2 n log log n) time using2O(n/ logn) processors [32]; (3) an algorithm that runs in

O(log3 n) time using2O(
√
n logn) processors [1].



The best known polynomial-size circuit for the quadratic residuosity problem has depthO(n/ log log n) where
n = log p [32]. Thus, given the current state of knowledge on this problem and the related modular exponentiation
problem, it is reasonable to assume that they are not inNC. In fact, this assumption (for the exponentiation
problem) has been explicitly relied on in [16].

It is easy to see that deciding quadratic residuosity modulop can be very efficiently reduced to computing the
monotone function defined byNQRPp. However, there is a major difference between the “standard” algorithmic
setting for this problem and our setting. Our setting is highly non-uniform, in the sense that with each input length
(or number of parties) we associate somefixedprimep. Hence, when computing this access structure one may use
a non-uniform “advice” depending onp. In algorithmic terms, we allow unlimited preprocessing which depends
on the primep but not on the other inputw. Nevertheless, we do not know how to use this type of preprocessing
to obtain an efficient parallel algorithm for the quadratic residuosity problem.9 (It is interesting to note, however,
that deciding quadratic residuosity modulo acompositeis no more difficult in our setting than deciding quadratic
residuosity modulo a prime, since the factorization of the composite may be used as advice.) To conclude, the
assumption thatNQRP 6∈ NC is stronger than the assumption that the standard quadratic residuosity problem (or
modular exponentiation) is not inNC, although still seems very reasonable given the current state of knowledge.

In light of the uncertain situation described above, one could hope for an unconditional super-polynomial lower
bound on a size of amonotone span programcomputingNQRP. This would be sufficient for proving that
NQRP cannot be efficiently realized by linear schemes and, as noted in the introduction, there are explicit mono-
tone functions for which such bounds are known. However, as we argue next, such lower bounds are impossible
to prove for theNQRP structure without proving thatNC1 6= P. For a fixed(m+ 1)-bit primep, the quadratic
residuosity function (modulop) is defined as:fp(x0, . . . , xm−1) = 1 iff

∑m−1
i=0 xi2i is a quadratic residue modulo

p. This function is not monotone. To define the monotone access structureNQRP we replaced each literal by
two parties, obtaining an access structure with2m parties. (This is a standard transformation, e.g., when proving
that monotone circuit evaluation isP-complete [36].) For technical reasons we also addedm minterms of size
two. It follows that the monotone formula size ofNQRPp is equal, up to an additiveO(n) difference, to the
(non-monotone) formula size of the functionfp. Thus, one cannot expect to prove strong lower bounds on the
size of a monotone span program (or even a monotone formula) forNQRP, since they will imply, in particular,
strong lower bounds on the (non-monotone) formula size of the quadratic residuosity function.10

4 An Efficient Nonlinear Scheme: The Statistical Case

In this section we construct an efficient nonlinear secret-sharing scheme whose access structure is as hard as
the general quadratic residuosity function. Unlike the previous construction, the scheme we construct below is
only statistically private and correct, and its reconstruction procedure is computationally inefficient. In Section 4.1
we show that perfect correctness (but not perfect privacy) can be achieved under a number-theoretic assumption.
We end this section by discussing a generalization of our construction which applies to the so-calledt-residuosity
problem. As a special case, we obtain an efficient scheme whose access structure is computationally equivalent to
the co-primality problem.

Definition 4.1 (The Access StructureNQRm) Letm be a positive integer. We define then-party access struc-

tureNQRm, wheren
def= 4m, by specifying its collection of minimal sets. It will be convenient in the following to

denote the first2m parties byW b
i , whereb ∈ {0, 1} and0 ≤ i < m, and the last2m parties byU bi . With each

pair (w, u), wherew, u ∈ {0, 1}m, we naturally associate a subset of partiesBw,u of size2m, defined by:

Bw,u
def= {Wwi

i : 0 ≤ i < m} ∪ {Uuii : 0 ≤ i < m} .
9Preprocessing can parallelize the algorithms for exponentiation when the field size and the exponentiation base are given in advance

(see [38]). However, in our case we know in advance the field size and the exponentiation power.
10The best known lower bound on the formula size for an explicit function isΩ(n3−o(1)) [39].



We will freely identify stringsw, u as above with integers in the interval[0, 2m − 1]. A setB is a minimal set of
NQRm if:

1. B =
{
W 0
i ,W

1
i

}
or B =

{
U0
i , U

1
i

}
for some0 ≤ i < m, or:

2. B = Bw,u for somew, u such thatw is nota quadratic residue modulou. (For technical reasons, we assume
here that this condition never holds whenu = 1, and always holds whenu = 0 except whenw = 1.)

We letNQR denote the family of access structures in which then-th structure isNQRbn/4c.

We start by observing that the computational complexity of the access structureNQR is essentially the same as
that of the general quadratic residuosity problem.

Claim 4.2 The circuit complexity ofNQR is the same, up to anO(n) difference, as that of the language{(w, u) :
|w| = |u| ∧ a is w quadratic residue modulo u}.

It follows that under the Quadratic Residuosity Assumption [37], computingNQR requires circuits of super-
polynomial size. The remainder of this section will be devoted to proving the existence of an efficient nonlinear
secret-sharing scheme forNQR. Specifically, we show:

Theorem 4.3 There exists a statistical secret-sharing scheme forNQRm in which:

• the secret-domain is{0, 1};
• the share size of each party isO(k2 + km);
• the reconstruction error probability is2−k;
• the privacy level isε(k) = O(k/2k).

Our secret-sharing scheme forNQRm proceeds as follows. LetD def= 24m+3k+1. In the following, all arith-
metic operations will be performed inZD. The dealer choosesz0, z1, . . . , z2m−1 ∈ ZD at random subject to the
restriction that they sum to0. In addition, it chooses two random integers1 ≤ r ≤ 2m+k and1 ≤ r′ ≤ 23(m+k).
Each party receives a single element ofZD, as specified in Table 3. For amplifying the correctness probability,

s = 0 s = 1
W b

0 r2 + z0 br2 + z0

W b
i 1 ≤ i < m zi 2ibr2 + zi

U bi 0 ≤ i < m 2ibr′ + zi+m 2ibr′ + zi+m

Table 3. A secret-sharing scheme for NQRm.

the above distribution procedure should be independently repeatedk times, so that each party receivesk elements
of ZD. In addition, the minimal authorized sets of size 2 should be taken care of separately, by independently
sharings among each such authorized pair (that is, for each such pair choose an independent random bitα, and
give α to the first party andα ⊕ s to the second).11 This only adds a single bit to the size of each share. The
following analysis will mostly focus on the core of the scheme, as described in Table 3.

11In fact, as in the previous construction this additional sharing is unnecessary for sets of the form
{
W 0
i ,W

1
i

}
.



Let SUMw,u be the sum of the2m shares held by parties inBw,u.
If gcd(w, u) = 1 then (*w is a quadratic non-residue modulou *)

If SUMw,u is quadratic residue modulou thens = 0 elses = 1
If gcd(w, u) 6= 1 then

Let c = gcd(w, u)
If c divides SUMw,u thens = 1 elses = 0

Figure 1. Reconstruction Procedure for Bw,u in NQRm.

Statistical correctness. The minimal authorized sets of size 2 were explicitly taken care of in the above con-
struction. It thus remains to prove the correctness for a subsetBw,u, wherew is not a quadratic residue modulo
u. If r were chosen such thatgcd(r, u) = 1 then the correctness would follow from similar arguments to those of
the proof forNQRP (that is, the secret is reconstructed by checking if the sum of shares is a quadratic residue).
However, since hereu is not fixed, we cannot guarantee that the above condition always holds. Nevertheless, this
already implies that the secret can be correctly reconstructed from the shares in Table 3 with a one-sided error
probability of at most1 − ϕ(u)/u, which is bounded away from 1. The following tighter analysis shows that the
one-sided error probability of reconstruction can be as low as1/2. Hence, withk independent repetitions the error
probability is at most2−k. In Figure 1 we present the reconstruction procedure and then prove its correctness. The
following lemma can be verified by inspection of Table 3.

Lemma 4.4 For any0 ≤ w, u < 2m and secrets ∈ {0, 1}, it holds thatSUMw,u = r2ws + r′u (whereSUMw,u

is the sum of the2m shares held by parties inBw,u).

Note that by our choice of parameters, the expressionr2ws + r′u in Lemma 4.4 is always less thanD. We will
therefore treat this expression as being evaluated over the integers.

From now on, we assume thatu ≥ 2 (the case thatu = 0 andw 6= 1 can be verified separately). Suppose
first thatgcd(w, u) = c > 1. In this case,c always dividesr2w + r′u, whereasc dividesr2 + r′u if and only
if c dividesr. Thus, with probability at least1 − 1/c ≥ 1/2 it does not divider2 + r′u. It follows that when
gcd(w, u) > 1 the cases = 0 can be distinguished from the cases = 1 with a one-sided error probability of at
most1/2, as described above.

Now suppose thatw is a quadratic non-residue modulou. In this case,r2 + r′u ≡ r2 mod u is always a square
modulou. This implies that SUMw,u is a quadratic residue whens = 0. The following lemma shows that with
probability at least1/2, this is not the case forr2w + r′u, i.e., whens = 1.

Lemma 4.5 Suppose thatw is a quadratic non-residue modulou (in particular, gcd(w, u) = 1). Then, the
probability thatr2w is a quadratic residue modulou is at most1/2.

Proof: By the Chinese Remainder Theorem, a number is a quadratic-residue modulou if and only if it is a
quadratic-residue modulo each prime power dividingu. Thus, there exists a prime powerpα dividing u such that
w is a quadratic non-residue modulopα. Now, if wr2 is a square modulou, then it is also a square modulopα, and
so there existsd such thatd2 ≡ wr2 mod pα. We argue that it must be the case thatp dividesr. Otherwise,r has
an inverse modulopα andw ≡ (d/r)2 mod pα contradicting the fact thatw is a quadratic non-residue modulopα.
The lemma follows by noting that the probability thatp dividesr is at most1/p ≤ 1/2, as required. 2

This concludes the analysis of the reconstruction procedure described above. Note that this reconstruction
procedure is computationally inefficient if the factorization ofu is unknown.



Statistical privacy. We now prove the privacy of our construction. As before, it suffices to consider maximal
unauthorized sets of two types. The first type consists of setsC such that|C| < 2m andC does not contain a pair
W 0
i ,W

1
i or a pairU0

i , U
1
i . For such a setC, it can be verified that the shares received by its parties are uniformly

and independently distributed overZD, regardless of the secrets.
We turn to the more interesting case of a setC = Bw,u such thatu ≥ 2 andw is a quadratic residue modulo

u. (The casesu = 1 andu = 0, w = 1 can be verified separately.) Whens = 0 the shares are otherwise
random numbers whose sum isr2 + r′u, and whens = 1 the shares are otherwise random integers whose sum is
r2w + r′u. Thus, it suffices to show that in this case SD(r2 + r′u, r2w + r′u) = O(2−k). We prove this using
the following lemmas. In the lemmas we denote byr, r′ the random variables used in the scheme (taking uniform
integral values from the intervals[1, 2m+k] and[1, 23(m+k)], respectively). For the proof we also use an additional
random variableru which is a uniformly distributed integer in[0, u− 1].

Lemma 4.6 If w is a quadratic residue modulou, then the distribution of(wr2
u) mod u is identical to that of

r2
u mod u.

Proof: Sincew is a quadratic residue modulou, there existsb such thatgcd(b, u) = 1 andb2 ≡ w mod u.
Sincewr2

u ≡ (bru)2 mod u, it suffices to show that(bru) mod u is identically distributed toru mod u = ru.
Finally, sincegcd(b, u) = 1, i.e.,b has an inverse modulou, then for every valueβ it holds thatPr[bru ≡ β] =
Pr[ru ≡ (β/b)] = 1/u. 2

Lemma 4.7 SD(r2 mod u , r2
u mod u) ≤ 2−k.

Proof: Recall thatr is chosen uniformly from the interval[1, 2m+k]. If u divides2m+k then the above two
distributions are identical. Otherwise, the contribution of eachy ∈ [0, u − 1] to this distance is at most1/2m+k,
and sinceu < 2m the total contribution is at most2m/2m+k = 2−k. 2

From the previous two lemmas, we may conclude that

SD(wr2 mod u, r2 mod u) = O(2−k). (3)

Now, define the multisets
V =

{
wr2 mod u : 1 ≤ r ≤ 2m+k

}
and

Z =
{
r2 : 1 ≤ r ≤ 2m+k

}
.

Let Z ′ be a maximal multiset such thatZ ′ ⊆ Z andZ ′ mod u def= {z mod u : z ∈ Z ′} ⊆ V . It follows
from Eq. (3) that|Z ′| = (1 − O(2−k))|Z|. DefineS = Z ′ ∪ (V \ (Z ′ mod u)). Note that|S| = |V | = 2m+k.
We will denote the elements ofS by y1, . . . , y2m+k and the uniform distribution overS by Y . It follows from the
above thatY satisfies: (1) SD(Y, r2) = O(2−k); (2) the distribution ofY mod u is identicalto that ofar2 mod u;
and (3)Y ≤ 22(m+k).

We would like to conclude that SD(wr2 + r′u, r2 + r′u) = O(2−k). To this end, we use the following lemma.

Lemma 4.8 Let y, z be two integers in some interval[0,M ] such thaty ≡ z mod u, and letR be uniformly
distributed in the interval[1,MK]. Then,SD(y +Ru , z +Ru) ≤ 1/K.

Proof: The statistical distance is bounded by|y − z|/(uMK) ≤M/(uMK) < 1/K. 2

We are now ready to complete the proof of privacy. From Property (1) ofY it follows that

SD(Y + r′u, r2 + r′u) = O(2−k). (4)



From property (2) ofY , we may assume thatyr ≡ wr2 mod u for every1 ≤ r ≤ 2m+k. LettingM = 23m+2k

andK = 2k, bothY andwr2 are no larger thanM , andr′ is uniform in[1,MK]. Since

SD(Y + r′u,wr2 + r′u) ≤ Er[SD(yr + r′u,wr2 + r′u)]

it follows from Lemma 4.8 that
SD(Y + r′u,wr2 + r′u) ≤ 2−k. (5)

Combining Eq. (4) and Eq. (5) we get that SD(wr2 + r′u, r2 + r′u) = O(2−k), as required.
As explained above, to reduce the error probability in the reconstruction from1/2 to 2−k we share the secret

independentlyk times. By standard arguments, this can only increase the statistical distance toO(k/2k), which is
still negligible ink.

4.1 A Perfectly Correct Scheme

In this section we show that under the Extended Riemann Hypothesis (abbreviated ERH), one can obtain a
variant of the above scheme which isperfectlycorrect, though still only statistically private. (It is open if there is a
scheme with perfect correctness and privacy which efficiently realizesNQR.) The only required modification is
the choice ofr: instead of choosing it uniformly from the interval[1, 2m+k], it is chosen as a randomprime from
the interval[2m, 2m+k]. Sinceu < 2m, this guarantees thatr is relatively prime tou, and this in turn is sufficient
to guarantee perfect correctness. We next argue that under the ERH, the resulting scheme is statistically private.

We will need the following results on the distribution of primes. For more information on this subject the reader
might consult, e.g., [5, Chapter 8]. For an integerx let π(x) be the number of primes in the interval[1, x], and for
integersx,w andu let π(x, u, w) be the number of primes in the interval[1, x] that are congruent tow mod u. It
is known thatπ(x) ≈ x/ log x. If gcd(w, u) > 1 then every number that is congruent tow mod u is a composite.
It turns out that the primes are nearly uniformly distributed among the other residue classes modulou. That is, if
gcd(w, u) = 1 thenπ(x, u, w) ≈ 1

ϕ(u)x/ log x, whereϕ(u) is the Euler function ofu.
We will need good bounds on the error terms in the above approximations. The bounds that can be proved

unconditionally are too crude for our purpose, and we will need bounds based on the the Extended Riemann
Hypothesis. Proving this famous hypothesis is one of the most important open questions in mathematics. We
will not formulate the statement of this hypothesis, and only state the following conclusion from the ERH. The
estimations that are used to derive the next theorem are presented in Appendix B.

Theorem 4.9 If the ERH holds andgcd(w, u) = 1 then for everyx andx′, whereu ≤ x′ ≤
√
x,∣∣∣∣π(x, u, w)− π(x′, u, w)

π(x)− π(x′)
− 1
ϕ(u)

∣∣∣∣ = O

(
log2 x√

x

)
,

where the constant in the “O” notation is an absolute constant independent ofw andu.

Notice thatπ(x,u,w)−π(x′,u,w)
π(x)−π(x′) is the probability that a uniformly random prime in the interval[x′, x] is congruent

to u modulow. Thus, the above theorem states that this probability is close to the probability that a uniformly
random element fromZ∗u is equal tow.

Corollary 4.10 Let u < 2m, U be a random variable distributed uniformly inZ∗u, andr be a uniformly chosen
prime in the interval[2m, 2m+k]. If ERH holds then for everyk,m such thatk ≤ 2m it holds thatSD(U, r mod
u) ≤ 2−Ω(k), and in particularSD(U2 mod u, r2 mod u) ≤ 2−Ω(k).



Proof:

SD(U, r mod u)

=
1
2

∑
y∈Z∗u

|Pr[U = y]− Pr[r mod u = y]|

≤ ϕ(u) ·O
(

(m+ k)2

√
2m+k

)

= O

(
2m(m+ k)2

20.5(m+k)

)
= 2−Ω(k).

The last equality holds sincek ≥ 2m. 2

To guarantee that the statistical distance decreases exponentially with the security parameterindependently of
m, we execute the scheme withk′ = max(k, 2m). Closely following the privacy proof of the previous protocol
(and replacing Lemma 4.7 with Corollary 4.10), one can show that the scheme is statistically private withε(k) =
2Ω(−k). The next theorem summarizes the properties of this scheme.

Theorem 4.11 If ERH holds, then there exists a statistical secret-sharing scheme forNQRm with perfect cor-
rectness in which:

• the secret-domain is{0, 1};
• the share size of each party isO(k +m);
• the privacy level isε(k) = 2−Ω(k).

4.2 Schemes fort-residuosity

The quadratic residuosity problem naturally generalizes to thet-residuosity problem defined as follows. An
integerw is a t-residue modulou if gcd(w, u) = 1 and there exists an integerb such thatw ≡ bt mod u.
The access structureNtR is defined as the access structureNQR, with quadratic residuosity replaced byt-th
residuosity.

A scheme forNtR can be obtained by the following small modification to the scheme forNQR: the ring size
D is changed to2(t+2)m+(t+1)k+1, the random stringr′ is chosen with uniform distribution from[1, 2(t+1)(t+k)],
and in the dealer’s distribution procedure we replacer2 by rt. The correctness and privacy of the modified scheme
are argued similarly to the original scheme. These modification also work in the scheme based on the ERH.

An interesting special case of the general scheme is whent = 1. In the resultant scheme,Bw,u can reconstruct
the secret iff the integersw andu are not co-primes (i.e.,gcd(w, u) > 1). Hence, its access structure is computa-
tionally equivalent to the co-primality problem. Checking if two integers are co-prime is clearly inP, and it is not
known to be inNC. An important feature of this instance of the general construction is that it is computationally
efficient: indeed, reconstruction only requires checking ifgcd(w, u) divides SUMw,u.

5 Quasi-Linear Secret-Sharing

In this section we study a natural extension of the class of linear secret-sharing schemes to what we callquasi-
linear schemes. Quasi-linear schemes are obtained bycomposinga finite number of linear secret-sharing schemes,
possibly over different fields.

Towards defining quasi-linear schemes, it will be convenient to use the following notation for extending the
secret-domain of a given secret-sharing scheme to an arbitrarily large finite domain.



Definition 5.1 LetΠ be a secret-sharing scheme with secret-domainS and share-domainsS0, . . . , Sn−1, letT =
{0, 1, . . . , |T | − 1} be any finite secret-domain, and let` = dlog|S| |T |e. Then, byΠ̃T we denote the randomized

mapping fromT to S`0 × · · · × S`n−1 defined as follows. For a secrett ∈ T , let (t1, . . . , t`) denote its base-|S|
representation, whereti ∈ S for all i. The output of̃ΠT (t) is obtained by independently applyingΠ to eachti and
letting thei-th entry of the output be the concatenation of thei-th entries from thè outputs ofΠ.

As can be easily seen,̃ΠT defines a secret-sharing scheme realizing the same access structure asΠ, whose
secret-domain isT and whose share-complexity is` = dlog|S| |T |e times that ofΠ. We are now ready to formally
define the notion of quasi-linear schemes.

Definition 5.2 Ann-party quasi-linear secret-sharing scheme is recursively defined as follows:

1. Anyn-party linear secret-sharing scheme is ann-party quasi-linear scheme.

2. Suppose thatΠ is an n′-party linear scheme over a fieldF with share-domainsS0, . . . , Sn′−1, and let
Π0, . . . ,Πn′−1 ben-party quasi-linear schemes. Then, define ann-party quasi-linear schemeΠ(Π0, . . . ,Πn′−1)
with secret-domainF as follows. To shares ∈ F , first applyΠ(s) to obtain sharess0, . . . , sn′−1. Then,
identifying each share-domainSi with the set{0, 1, . . . , |Si| − 1}, independently share eachsi among the
n parties usingΠ̃i

Si
.

It is convenient to view ann-party quasi-linear schemeΠ as a tree, in which every node contains a linear secret-
sharing scheme. Associating each linear scheme with its corresponding monotone span program, we may view
this tree as a Boolean formulaϕΠ over the basis of all monotone span programs (over all finite fields);12 that is,
each gate in the formula computes the Boolean function computed by a monotone span program. For brevity we
refer to such a formula as anMSP-formula.

The following proposition establishes the correspondence between a quasi-linear scheme and its associated
MSP-formula. Its straightforward proof, generalizing the proof for the AND-OR-Threshold formula construction
from [11], is omitted from this abstract.

Proposition 5.3 LetΠ be a quasi-linear secret-sharing scheme andϕΠ be the corresponding MSP-formula. Then,
Π realizes the access structure computed byϕΠ.

Are quasi-linear schemes strictly stronger than linear schemes, or can every quasi-linear scheme be simulated
by a linear scheme with a polynomial complexity overhead? Given the current understanding of monotone span
program complexity, no conclusive answer can be obtained. However, under the plausible assumption that the
power of monotone span programs over fields of different characteristics is incomparable, quasi-linear schemes
are indeed (super-polynomially) stronger. This unsurprising observation can be formally argued by embedding
two or more monotone span programs over different fields as restrictions of one efficient MSP-formula. For
instance, suppose thatf (respectively,g) can be efficiently computed by a monotone span program over GF(2)
(resp., GF(3)), but hasnω(1) monotone span program size over any field whose characteristic is different from 2
(resp., 3). Then, the functionh = (y ∧ f) ∨ (z ∧ g), where the variablesy, z appear neither inf nor in g, can be
efficiently realized by a quasi-linear scheme, but cannot be efficiently realized by any linear scheme.

However, as we show next, quasi-linear schemes cannot be too powerful. More specifically, if there is an
efficient quasi-linear scheme forf then f can be computed by a shallow circuit. The idea of the proof is to
consider the corresponding MSP-formulaϕ. We use a result of [7] showing that a formulaϕ over a general
basis can be “balanced” to obtain an equivalent formula whose depth is small and its size is not too big (this is
a generalization of the well-known result from [51] for bounded fan-in formulae over the standard basis). An
instantiation of this result which is useful for our purposes is quoted in the following lemma.

12An input variable is viewed as a size-1 monotone span program in the variablesx0, . . . , xn−1 returning its value.



Lemma 5.4 (Beigel and Fu [7])Letϕ be a MSP-formula. Then, there exists a MSP-formulaϕ̂ such that: (1)ϕ̂
computes the same function asϕ; (2) the depth of̂ϕ isO(log(size(ϕ))); (3) the size of̂ϕ is size(ϕ)O(1); and (4)
each node of̂ϕ is either labeled by some span program appearing inϕ, or is labeled by an AND, OR, or NOT
gate.

Theorem 5.5 Suppose thatf is efficiently realized by quasi-linear schemes. Then,f ∈ NC4.

Proof: Let Π be an efficient quasi-linear scheme realizingf , and letϕ be the corresponding MSP-formula.
We may assume without loss of generality that the span program labeling eachinternal node ofϕ depends on all
of its inputs, and has at least two inputs; otherwiseΠ could be simplified into a quasi-linear schemeΠ′ whose
MSP-formulaϕ′ satisfies this property. As the number of leaves in such aϕ is a lower bound on the complexity
of Π (and the degree of each internal node ofϕ is at least 2),ϕ must be of size poly(n). It also follows that
each nodev of ϕ must be labeled by apolynomial-sizemonotone span programMv over a field GF(qv) such that
log qv = poly(n).13 By Lemma 2.6, the functionfv computed byMv can be simulated by a Boolean circuit of
size poly(n) and depthO(log3 n). The theorem follows by applying Lemma 5.4 toϕ and replacing each node in
ϕ̂ by a correspondingNC3 circuit. 2

We conclude this section by showing an application of quasi-linear schemes for the construction of secret-
sharing schemes efficiently realizing monotone span programs over a ringZu, whereu is a square-free compos-
ite.14

Theorem 5.6 LetM be a monotone span program overZu, whereu is the product ofk distinct primesp1, . . . , pk.
Then, there exists a quasi-linear schemeΠM realizing the access structure defined byM , whose share-complexity
is size(M) ·

∑k
j=1 log pj .

Proof: ΠM is defined by the following depth-2 MSP-formulaϕM . The root contains an AND gate with fan-in
k (represented by a size-k monotone span program over GF(2)). Thej-th leave,1 ≤ j ≤ k, contains a monotone
span programMj over GF(pj), obtained fromM by reducing each of its entries modulopj . By Proposition 5.3,
to prove thatΠM indeed realizes the access structure defined byM it suffices to show thatϕM computes the
same function asM . Indeed, ifM(x) = 1, then clearlyMj(x) = 1 for all j (as witnessed by the same linear
combination, modulopj). The converse follows by applying the Chinese Remainder Theorem to thek linear
combination vectors witnessing thatMj(x) = 1, 1 ≤ j ≤ k. 2

Example 5.7 Figure 2 shows an efficient span program overZu for testing whether the inputx (viewed as an
integer) is co-prime tou. Replacing each negative literal with a new variable, this example gives a very efficient
quasi-linear scheme for a monotone access structure derived from the co-primality problem.15

6 Open Problems

The main open problem in this area remains that of characterizing the class of access structures admitting
efficient secret-sharing. A more modest problem is to obtain anunconditionalseparation between the access
structures which can be efficiently realized by linear schemes and those efficiently realized by general (nonlinear)

13The converse does not hold. It is easy to construct a polynomial-size MSP-formula (even a shallow one) which is efficient in this sense,
but whose corresponding quasi-linear scheme is inefficient.

14Span programs over rings are defined in a completely analogous way to span programs over fields.
15Whetherx is co-prime tou can be tested inNC1 given an advice depending onu (namely, its factorization). Hence, there exist

efficient linear secret-sharing schemes for this access structure. Still, the exact efficiency of the quasi-linear scheme is much better. See
Example A.2 for an efficient nonlinear realization which does not rely on the factorization ofu.



x̄0 0 1 0 0 · · · 0
x0 1 1 0 0 · · · 0
x̄1 0 -1 1 0 · · · 0
x1 2 -1 1 0 · · · 0

...
...

...
x̄n−2 0 0 · · · 0 -1 1
xn−2 2n−2 0 · · · 0 -1 1
x̄n−1 0 0 · · · 0 0 -1
xn−1 2n−1 0 · · · 0 0 -1
target 1 0 · · · 0 0 0

Figure 2. A span program over Zu testing whether gcd(x, u) = 1.

schemes. As indicated in Section 5, it suffices to prove strong separations between monotone span program
complexity over fields of different characteristics.

We next suggest a candidate for a function that has a small monotone span program over GF(2) and does not
have small monotone span program over fields of different characteristic. The candidate is the ODD-FACTOR
function considered in [2]: The function hasn = v2 variables; the input is a bipartite graph withv vertices in each
part represented by a(0, 1)-matrix of sizev × v. The graph is accepted if it has an odd factor, i.e., a spanning
subgraph such that all vertices have odd degree in the subgraph. Babai, Gál, and Wigderson [2] prove that this
function has a small monotone span program over GF(2), but has only exponential monotone formulae and quasi-
polynomial monotone circuits. The open problem is whether the ODD-FACTOR function has small monotone
span program over fields of a different characteristic.
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A A Generalization of the Scheme from Section 3

In this section we show how to generalize the scheme forNQRP to similar access structures. This gener-
alization will uncover what algebraic properties we use in our construction, and will supply us with a few more
examples.

Let R = 〈A,+, ∗〉 be a finite ring andB ⊆ A \ {0} be such thatG = 〈B, ∗〉 is a group.16 In the sequence
all arithmetic operations involving ring elements are performed in the ring. We assume that2 ∗ a 6= 0 for every
a ∈ R \ {0}. We Define the access structureAR,G in a similar way toNQRP.

Definition A.1 (The access structureAR,G) Letm
def= blog |R|c. We define then-party access structureAR,G,

wheren
def= 2m, by specifying its collection of minimal sets. With an integerw ∈ {0, 1}m we naturally associate a

setBw of sizem defined by:
Bw

def= {Bwi
i : 0 ≤ i < m} .

A setB is a minimal set ofAR,G if:

• B =
{
P 0
i , P

1
i

}
for some0 ≤ i < m, or:

• B = Bw for somew ∈ {0, 1}m such thatw /∈ G.

We next show haw to generalize the scheme forNQRP to a scheme forAR,G.
16We even do not need all the properties of these algebraic structures.



Distribution. The dealer chooses at randomm − 1 random elementsz0, z1, . . . , zm−2 ∈ R and an additional
random elementr ∈ G. Definezm−1

def= −
∑m−2
i=0 zi. The shares of the parties are specified in Table 4.

s = 0 s = 1
P b0 r + zi br + zi

P bi 1 ≤ i < m zi 2ibr + zi

Table 4. A secret-sharing scheme for AR,G.

The reconstruction is similar to the scheme forNQRP, where ifB = Bw for somew /∈ G, thens = 0 iff
SUMw ∈ G. The correctness of this rule follows from the fact that ifw /∈ G andb ∈ G thenw ∗ b /∈ G.

For the security, we only consider the case whereC = Bw for somew ∈ G. (The first case is identical to
the scheme forNQRP.) In this case we claim that, regardless of the value of the secret, the vector-share of the
parties inC is a random vector such that SUMw ∈ G. This is clearly true whens = 0. Whens = 1, the sum
SUMw is r

∑m−1
i=0 wi2i = rw, and sincer is a random element ofG andw has an inverse inG, the product is a

random element ofG.
We next show a few examples of access structures.

Example A.2 Let N be a positive integer,R = 〈ZN ,+, ∗〉, andG = 〈Z∗N , ∗〉. In this case, an efficient linear
scheme forAR,G exists (see Footnote 15). A quasi-linear scheme for this access structure is described in Ex-
ample 5.7. However, both the linear and the quasi-linear schemes require knowing the factorization ofN . The
nonlinear scheme does not require knowledge of the factorization, and all the computations involved are efficient.

Example A.3 Let p be a prime,R = 〈Zp2 ,+, ∗〉, B =
{
w ∈ Zp2 : wp−1 ≡ 1 mod p2

}
, andG = 〈B, ∗〉. In this

case we do not know if there is a quasi-linear scheme forAR,G, or even ifAR,G is in NC.

B Explicit Estimates implied by ERH

The next theorem gives explicit bounds on the error term in the approximation of the distribution of the primes.

Theorem B.1 Let li(x) def=
∫ x

2
dt

log t . If the ERH holds then forx ≥ 2657:

x

log x+ 2
< π(x) <

x

log x− 4
[5, Theorem 8.8.1]

|π(x)− li(x)| ≤
√
x log x/8π [5, Page 249]

If ERH holds andgcd(w, u) = 1 then[5, Theorem 8.8.18]

∣∣∣∣π(x, u, w)− li(x)
ϕ(u)

∣∣∣∣ ≤ √
x(log x+ 2 log u).


