
An observation regarding Jutla’s modes of operation

Shai Halevi∗

April 2, 2001

Abstract

Recently, Jutla suggested two new modes of operation for block ciphers. These modes build
on traditional CBC and ECB modes, respectively, but add to them masking of the outputs and
inputs. Jutla proved that these masking operations considerably strengthen CBC and ECB
modes. In particular, together with a simple checksum, the modified modes ensure not only
confidentiality, but also authenticity. Similar modes were also suggested by Gligor and Donescu
and by Rogaway.

In Jutla’s proposal (as well as in some of the other proposals), the masks themselves are
derived from an IV via the same block cipher as used for the encryption (perhaps with a
different key). In this work we note, however, that the function for deriving these masks need
not be cryptographic at all. In particular, we prove that a universal hash function (a-la-Carter-
Wegman) is sufficient for this purpose.

∗IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA,shaih@watson.ibm.com

1

1 Introduction

The area of modes of operations for block ciphers received much attention lately, partly due to an
announcement by NIST that they are considering an update to their list of standardized modes.
As part of this work, some new modes of operations were suggested, that have practical advantages
over known modes such as CBC and ECB.

The purpose of some of these new modes is to ensure – in addition to secrecy – also the integrity of
the encrypted string. Although there have been many proposals on how to do that in the past, they
all either turned out to be flawed, or they required a computation of a MAC, separately from the
encryption process. Recently, however, Jutla observed that with the addition of a simple checksum
and proper masking, CBC and ECB modes can provide both secrecy and authentication [3]. Jutla
proposed two new modes, called IACBC and IAPM, which are based on CBC and ECB modes,
respectively.

Roughly speaking, these modes work as follows: When encrypting an L-block plaintext P =
P1 . . . PL, we first attach at the end of the message a simple checksum of all these blocks, PL+1 =∑
j Pj . Then, we pick a new IV (which was never used before with the current key), and from this

IV, we derive “random looking” masks S0, S1 . . . SL+1. For the IACBC mode, we now apply CBC
encryption to the plaintext message (with the extra PL+1 block), and simply mask the L+1 output
blocks by the masks S1, . . . , SL, S0 before outputting them as the ciphertext. For the IAPM mode
we first mask the plaintext blocks using masks S1, . . . , SL, SL+1, then encrypt the result in ECB
mode, and then mask again with S1, . . . , SL, S0 before outputting the ciphertext. Similar modes
were also suggested by Gligor and Donescu (XCBC and XECB modes [2]) and by Rogaway (OCB
mode [4]). Below we refer to such modes as “masked CBC” and “masked ECB” modes.

The “magic” of these new modes of operations is in the way they generate the masks Sj . Jutla
observed that these masks need not be fully pseudorandom (and therefore can potentially be gen-
erated much faster than L applications of the underlying block cipher). Roughly speaking again,
the security analyses of these modes rely on the following two properties of the masks:

(a) The masks that are used in different encryptions are independent.1

(b) Within each encryption, the masks that are used for different blocks are pairwise independent.2

The difference between full independence and pairwise independence is very important here. To get
full independence, we must use the underlying block cipher, whereas to get pairwise-independence
it is sufficient to use combinatorial (non-cryptographic) techniques. These modes of operation typi-
cally prescribe that the masks are generated by first “encrypting the IV” to get some pseudorandom
values, and then using these pseudorandom values in a simple (and fast) combinatorial construction.

In this work we observe that Property (a) from above is not really needed. Namely, it is sufficient
that all the masks be only “pairwise-independent”. Hence, there is no need to use the block cipher
at all in the generation of the masks.

1.1 Organization

In this note we only consider “masked ECB” modes. (The treatment for “masked CBC” modes
is similar.) In Section 2 we define (our abstraction of) Jutla’s IAPM mode of operation. We also

1More precisely, their distribution is indistinguishable from independent masks
2The property that is needed here is actually a bit weaker than pairwise independence. See details below.

1

h h h h

hhhh
G

S1 S2 SL

S1 S2 SL S0

S0, S1, . . . Sl, SL+1

ChksumP1 P2 · · · PL

F F · · · F F

IVL

C0 C1 C2 · · · CL CL+1

SL+1

Figure 1: Jutla’s “masked-ECB” mode of operation

re-cap the security definition that we seek to prove, define the property that we need from the
masks, and briefly discuss some methods for implementing the mask generation. The technical
“meat” of this note is in Section 3, where we prove security of this mode of operation, based on
the abovementioned property of the masks. In Section 4 we discuss some variants of this mode of
operation, and elaborate on the applicability of the analysis in this note to those variants.

2 The masked ECB modes of operation

The mode that we analyze in this note is almost identical to Jutla’s IAPM, except that we abstracted
away the specifics of the mask generation. The notations that we use are also similar to those used
by Jutla [3].

For this mode, it is postulated that the encryptor and decryptor share an invertible pseudorandom
permutation over {0, 1}n (i.e., an n-bit block cipher), as well as a mask-generation function. The
mask-generation function takes as input an n-bit IV string, and the length L of the plaintext, and
generates L + 2 n-bit masks. Below we denote the shared permutation by F : {0, 1}n → {0, 1}n,
and the mask-generating function by G : N × {0, 1}n → ({0, 1}n)∗. (We assume for the most part
that G(L, IV) is independent of L.)

Below we use ⊕ to denote bit-wise exclusive-or between two n-bit strings, and when we write
∑
j Pj

we means the exclusive-or of the Pj ’s.

To encrypt an L-block plaintext P = P1 . . . PL (with Pj ∈ {0, 1}n), the encryptor first picks a
new nonce, which we denote by IV . It is important that this nonce was never used before by the
encryptor with the same F,G (and that it is chosen independently of F,G). The encryptor uses
G to compute 〈S0, S1, . . . , SL+1〉 ← G(L, IV). The ciphertext C = C0, . . . , CL+1 is computed by
setting C0 = IV , Cj = Sj ⊕ F (Sj ⊕ Pj) for i = 1 . . . L, and CL+1 = S0 ⊕ F (SL+1 ⊕

∑L
i=1 Pj). This

mode is depicted in Figure 1.

To decrypt a ciphertext of L+ 2 blocks, C = C0, C1, . . . , CL+1, the decryptor computes the masks
〈S0, S1, . . . , SL+1〉 ← G(L,C0), then it recovers Pj = Sj ⊕ F−1(Sj ⊕ Cj) for i = 1 . . . L, and
PL+1 = SL+1 ⊕ F−1(S0 ⊕ CL+1), and verifies that PL+1 =

∑L
i=1 Pj . If the check passes, the

plaintext is P1 . . . PL. Otherwise, the ciphertext is deemed invalid.

2

2.1 Security

Security for this mode of operation is defined as a combination of the properties indistinguishability
under chosen-plaintext attacks and integrity of ciphertext. Here we only provide a brief overview
of these notions. We refer the reader to, e.g., [1] for a formal presentation of these definitions (as
well as a proof that together they imply indistinguishability under chosen-message-and-ciphertext
attacks).

Secrecy. The secrecy requirement is the (usual) left-or-right notion. An adversary is given access
to an “encryption oracle”, that accepts pairs of plaintexts (both of the same length), and encrypts
one of them. Either always the first plaintext, or always the second. The adversary is successful if
it can guess which is the case, and the encryption is considered secure if feasible adversaries have
only negligible advantage in guessing correctly (vs. a random guess).

Authenticity. An adversary is given access to an encryption oracle. It can query that oracle as
much as it wants, and at the end it needs to produce a ciphertext that is different than all the ones
produces by the oracle. In the sequel we call this ciphertext the “forged ciphertext”. The adversary
is successful if the “forged ciphertext” is valid, and the scheme is secure if any feasible adversary
only has a negligible success probability.

2.2 The mask-generation function

The property we need is essentially just the usual notion of an ε-xor-universal function (see, e.g.
[5], where this name was coined). The only difference is that our syntax is slightly different. We
need another piece of notation here. For j = 0, 1, . . ., we denote by Gj(L, IV) the j’th mask
generated by G(L, IV). Gj is undefined when j > L+ 1. Below we usually assume that Gj(L, IV)
is independent of L. That is, Gj(L, IV) = Gj(L′, IV), provided that both are defined. We call
such function ”L-independent”. (We only need L for the “additional property” below.)

Definition 1 (Xor-Universal Functions) Let n be an integer and let ε be some some real num-
ber ε ∈ [0, 1]. A distribution over “L-independent” functions G : N × {0, 1}n → ({0, 1}n)∗ is said
to be ε-xor-universal if for any fixed ∆ ∈ {0, 1}n, and any two fixed tuples (j, L, IV), (j′, L′, IV ′),
s.t. j ≤ L+ 1, j′ ≤ L′ + 1 and (j, IV) 6= (j′, IV ′),

Pr
G

[
Gj′(L′, IV ′)⊕Gj(L, IV) = ∆

]
≤ ε

Remark: an additional property. The security proof in Section 3 can be somewhat simplified,
if we assume that the function G0(· · ·) is not “L-independent”, but rather it is also xor-universal
with respect to the L’s. Namely, we still require that Gj is “L-independent” for j > 0, but
for j = 0 we have the requirement that for any two fixed pairs (L, IV) 6= (L′, IV ′) we have
Pr [G0(L′, IV ′)⊕G0(L, IV) = ∆] ≤ ε. During the proof, we mark by footnotes the places where
this extra requirement can be used for simplification.

Implementing the mask-generation function. In many of the modes suggested in [3, 2, 4], the
masks where generated more or less according to the following recipe: the encryptor and decryptor

3

share a second (pseudo)random function F ′. Then, on a given IV , they compute r = F ′(IV), and
use r to form an xor-universal sequence. (Say, by setting Sj = (j + 1) · r where the multiplication
occurs in some field, and (j + 1) is viewed as some non-zero element in that field. In Rogaway’s
scheme [4] it is even suggested to set Sj = r + (j + 1) · s, where s can be thought of as part of the
key.)

Such methods achieve a property similar to Definition 1, but in fact, they achieve much more
than that. If F ′ is (pseudo)random, then the value Gj(Li, IV i) is (pseudo)independent of all the
sequences G(Li

′
, IV i′) for i′ 6= i. Indeed, the security arguments in the abovementioned works take

advantage of this stronger property of G. As it turns out, however, the property in Definition 1 is
sufficient.

One way to get only our weaker property, is to use the following method, that does not involve
cryptographic functions: Let L̄ be an upper bound on the ciphertext length that can be handled by
the encryption algorithm (say, L̄ = 2n, so the plaintext can have at most 2n−2 blocks). The parties
share a random n× (

⌈
log L̄

⌉
+n) boolean matrix M , and the mask Sj = Gj(L, IV) is computed as

Sj = M · (j, IV), where (j, IV) is viewed as a boolean vector of length
⌈
log L̄

⌉
+ n.

To get the additional property from above, we can slightly modify this construction: the matrix M
is now of dimension n×(

⌈
log L̄

⌉
+1+n), masks Sj , j = 1 . . . L+1 are computed as Sj = M ·(2j, IV),

and the mask S0 is computed as S0 = M · (2L+ 1, IV).

3 Analysis

3.1 Integrity of ciphertexts

The structure of the analysis below generally follows the structure of Jutla’s proof [3]. We also
use similar notations. Throughout the analysis we sometimes denote some quantities by lowercase
English letters, when we want to stress that these quantities are fixed, rather that being random
variables. Otherwise we denote everything by uppercase English letters. In the analysis below, we
assume that the permutation F is chosen uniformly at random from the space of all permutations
over {0, 1}n. The transformation to pseudorandom permutation is standard. We also assume that
the mask-generating function G is chosen independently of F , from an ε-xor-universal distribution,
and that the IV’s are all distinct and independent of F,G.

Fix an adversary A, and assume that A is deterministic (or else, fix also the randomness that A
uses). Let m be an upper bound on the number of queries that A asks the encryption oracle, let
u be an upper bound on the number of of blocks in all the ciphertexts that the encryption oracle
returns (not counting the IV’s). Let v be an upper bound on the number of blocks in the “forged
ciphertext” (again, not counting the IV). To somewhat reduce notations, we assume (w.l.o.g.) that
A always asks exactly m queries, whose answers total exactly u blocks. (This means that the total
number of plaintext blocks in A’s queries is exactly u−m, since each ciphertext has one block more
than its plaintext, other than the IV.)

Theorem 2 If F is a random permutation and G is an ε-xor-universal function, independent of
F , then for any adversary A that asks exactly m plaintext queries, totalling exactly u −m blocks,
and produces a “forged ciphertext” of length at most v blocks, it holds that

Pr[A produces a valid “forged ciphertext”] < 2−n
(u

2

)
+ ε(

(u
2

)
+ u+ v) + 1

2n−u−v

4

G e
e

e
eSi0, . . . , S

i
Li+1

IV iLi

Sij

SiLi+1

Sij

Si0

M i
Li+1

F
N i
Li+1

P ij M i
j

F
N i
j Cij

(j = 1 . . . Li)

CiLi+1

∑
j P

i
j = P iLi+1

Ci0

Figure 2: Notations used in the analysis

The probability is taken over the choice of F,G and the IV’s.

Proof: We use the following notations: The length of the i’th plaintext query to the encryption
oracle is denoted Li, and the query itself is denoted P i = P i1 . . . P

i
Li . The checksum block is denoted

P iLi+1 =
∑Li

j=1 P
i
j . The IV in the i’th encryption is denoted by IV i, the masks that are used in

this encryption are denoted Si0 . . . S
i
Li+1, with Sij = Gj(L, IV i). The masked blocks (to which

ECB encryption is applied) are denoted M i
1 . . .M

i
Li+1, where M i

j = P ij ⊕ Sij . The blocks after the
ECB encryption are denoted N i

1 . . . N
i
Li+1, where N i

j = F (M i
j). Finally the ciphertext is denoted

Ci = Ci0 . . . C
i
Li+1, where Ci0 = IV i, Cij = N i

j ⊕Sij for j = 1 . . . Li, and CiLi+1 = N i
Li+1⊕N

i
0. These

notations are depicted in Figure 2.

Similarly, we denote the “forged ciphertext” by C ′ = C ′0 . . . C
′
L′+1, and the implied IV is denoted

IV ′ = C ′0. The masks are denoted S′j = Gj(L′, IV ′), the inputs to F−1 are N ′j = C ′j ⊕ S′j for
j = 1 . . . L′ and N ′L′+1 = C ′L′+1 ⊕ S′0. The result of applying F−1 is denoted M ′j = F−1(N ′j), and
the corresponding “plaintext blocks” are denoted P ′j = M ′j⊕S′j . Recall that the goal of the adversary
here is to generate a ciphertext C ′ that is different from all the Ci’s, and yet P ′L′+1 =

∑L′
j=1 P

′
j .

Let ~c be any fixed vector of u n-bit blocks, and let ~iv be a fixed vector of m IV’s. We identify with
the pair 〈~iv,~c〉 a run of the adversary A. In this run, A produces the plaintexts P 1 . . . Pm, totalling
u−m blocks. For each Li-block plaintext P i, it gets back a ciphertext Ci with the IV being the next
block from ~iv, and the rest of the ciphertext being the next Li + 1 blocks from ~c. This run induces
a unique parsing of ~c into m ciphertexts, and it also uniquely defines the corresponding vector of
P i’s.3 Notice that since A is deterministic, then P i is a deterministic function of C1 . . . Ci−1.

Proof overview. The proof proceeds in two steps. Roughly speaking, in Lemma 3 we show that
with overwhelming probability (over the choice of F and G), there exists at least one block N ′x
which does not appear anywhere else. That is, N ′x 6= N i

j for all i = 1 . . .m, j = 1 . . . Li + 1, and
N ′x 6= N ′j for all j = 1 . . . L′ + 1, j 6= x. This is because the mask generation function G is ε-xor-
universal: To get N ′x = N i

j we must have Sij ⊕ S′x = Cij ⊕ C ′x, which happens with probability at
most ε. The formal proof below requires some care to deal with the adaptiveness of the adversary,
and is otherwise just a case analysis, using this fact about the masks.

Call a block N ′x as above a unique block. In Lemma 6 we prove that if there exists such unique block,
3Potentially, this run may not be consistent with any choice of G,F . I.e., it could be that there is no such choice

that for each of the P i returns the corresponding Ci. In the analysis below we show that this does not happen, but
for now we ignore this point.

5

then the probability of getting a valid ciphertext (i.e., P ′L′+1 =
∑
j≤L′ P

′
j) is very low. Roughly,

this is because there is only one value of M ′x = F−1(N ′x) that will make the ciphertext valid, but
since N ′x does not appear anywhere else, then F−1(N ′x) can assume almost any value.

A caveat. The above line of proof has a problem, though. In fact, there is a strategy for the
adversary to ensure that there is no unique block. Specifically, this happens when the ciphertext
C ′ is obtained by taking a previous ciphertext Ci, and removing from it all the blocks Cir+1, . . . C

i
Li

for some r. That is, C ′ = Ci0, . . . , C
i
r, C

i
Li+1. It is not hard to show that in this case, all the N ′j ’s

already appeared as N i
j ’s (see Subcase (b4) in the proof of Claim 4(iii) below). However, it is also

not hard to see that the probability of getting a valid ciphertext in this case is very low (see proofs
of Claim 4(ii) and Lemma 6).

Thus, we have to somewhat modify the proof structure. In Lemma 3 we show that with over-
whelming probability, one of two events happens: either C ′ is of the form above but the “forged
plaintext” is invalid, or else there exists a unique block N ′x. In Lemma 6 we show that in the latter
case, the probability of getting a valid ciphertext is very low.4

More notations. We denote by Succ the event in which the adversary is successful. We also
denote by E0 the event in which C ′ is obtained as a truncation of some Ci as described above,
and by E1 the event in which there is a unique block. By E2 we denote the event in which all the
M i
j ’s (i.e., the inputs to F) are distinct, and by E3 we denote a sub-event of E0, which roughly

corresponds to the “forged ciphertext” being invalid. Formally, we have:

Succ: C ′ 6= Ci for all i ∈ {1 . . .m}, and yet P ′L′+1 =
∑L′
j=1 P

′
j

Event E0: ∃ i ∈ {1 . . .m}, r ∈ {0, . . . , Li − 1}, s.t. C ′ = Ci0, . . . , C
i
r, C

i
Li+1

Event E1: ∃ x ∈ {1 . . . L′ + 1}, s.t.
(a) ∀ i ∈ {1 . . .m}, j ∈ {1 . . . Li + 1}, N ′x 6= N i

j , and
(b) ∀j ∈ {1 . . . L′ + 1} s.t., j 6= x, N ′x 6= N ′j

Event E2: ∀i, i′ ∈ {1 . . .m}, j ∈ {1 . . . Li + 1}, j′ ∈ {1 . . . Li′ + 1},
if (i, j) 6= (i′, j′) then M i

j 6= M i′
j′

Event E3: ∃ i ∈ {1 . . .m}, r ∈ {0, . . . , Li − 1}, s.t. C ′ = Ci0, . . . , C
i
r, C

i
Li+1

but for these i, r, we have Sir+1 ⊕ SiLi+1 6=
(∑r

j=1 P
i
j

)
⊕ P iLi+1

We recall that any two fixed vectors 〈~iv,~c〉 define a run of the adversary A, which in turn induces
a parsing of ~c into m ciphertexts, the corresponding m plaintexts (totalling m− u blocks) and the
“forged ciphertext” C ′. To stress the fact that some quantities are uniquely determined by 〈~iv,~c〉,
we sometimes denote them as a function of these vectors. For example, C ′(~iv,~c) if the “forged
ciphertext” that is induced by 〈~iv,~c〉, P ij (~iv,~c) is the j’th block in the i’th plaintext induced by
〈~iv,~c〉, etc. We say that the pair 〈~iv,~c〉 is valid if all the blocks in ~iv are distinct, and if the “forged
ciphertext” C ′(~iv,~c) is different than all the Ci’s. Below we assume (w.l.o.g.) that only valid pairs
〈~iv,~c〉 happen in an execution of A with non-zero probability.

4This caveat does not arise if we assume that the function G has the additional property that is mentioned after
Definition 1. Namely, under that extra assumption, there will always be a unique block (with high probability),
regardless of the adversary’s strategy.

6

Observe that since 〈~iv,~c〉 uniquely determine all the ciphertexts Ci and also the “forged ciphertext”
C ′, it uniquely determines whether or not event E0 happens in the associated run of A. Slightly
abusing notations, we write 〈~iv,~c〉 ∈ E0 if event E0 happens in that run, and 〈~iv,~c〉 /∈ E0 otherwise.
However, since 〈~iv,~c〉 do not uniquely determine the M i

j ’s and N i
j ’s (as those depend also on the

masks, which in turn depend on the choice of G), then they do not determine whether or not events
E1,E2,E3 happen in the associated run of A.

Now consider fixed 〈~iv,~c〉, and any fixed mask-generation function g. These together determine
not only the actions of the adversary, but also all the M i

j ’s, N
i
j ’s, and N ′j ’s. Therefore, they also

determine whether or not events E1,E2,E3 happen in the associated run.5 Again, to stress that
some quantities are determined by 〈~iv,~c, g〉, we write these quantities as a function of 〈~iv,~c, g〉.
For example, M i

j(~iv,~c, g), or N ′j(~iv,~c, g). We also write 〈~iv,~c, g〉 ∈ E1 (resp. ∈ E2, E3) if event
E1 (resp. E2,E3) happens in that run, and otherwise 〈~iv,~c, g〉 /∈ E1 (resp. /∈ E2, E3). We use
expressions like 〈~iv,~c, g〉 ∈ E2 ∩ (E1 ∪ E3) in the obvious way.

We start with the main technical lemma, where we show that the event (E1 ∨ E3) occurs with
overwhelming probability.

Lemma 3 Pr[¬(E1 ∨ E3)] ≤ 2−n
(u

2

)
+ ε(

(u
2

)
+ u+ v).

Proof: Below we prove that Pr[¬(E1∨E3)] ≤ ε(
(u

2

)
+u+v) when F is chosen as a random function.

A standard argument shows that moving from random functions to random permutations adds at
most 2−n

(u
2

)
to this probability.

Intuitively, Lemma 3 is true since: (a) Event E2 happens with very high probability, due to the
properties of the mask-generation functions; (b) Conditioned on E2, the ciphertexts that the adver-
sary sees are independent of the masks that are used; and (c) Therefore, the properties of G again
ensure that with high probability, either at least one N ′x does not “collide” with any previous N i

j

(when E0 does not happens), or Sir+1, S
i
Li+1 cause event E3 to happen (when E0 happens). The

formal argument follows.

Claim 4 (i) For any fixed, valid, pair 〈~iv,~c〉, PrG
[
〈~iv,~c,G〉 /∈ E2

]
≤ ε ·

(u
2

)
.

(ii) For any fixed, valid, pair 〈~iv,~c〉 ∈ E0, PrG
[
〈~iv,~c,G〉 /∈ E3

]
≤ ε.

(iii) For any fixed, valid, pair 〈~iv,~c〉 /∈ E0, PrG
[
〈~iv,~c,G〉 /∈ E1

]
≤ ε(u+ v).

In all cases, the probability is taken over the choice of G, according to the distribution of the
mask-generating function.

Proof: (i) Since all the IV’s are distinct, then from (i, j) 6= (i′, j′) we get that also (j, IV i) 6=
(j′, IV i′). For each (i, j) 6= (i′j′), we have M i

j = M i′
j′ if an only if P ij ⊕ Sij = P i

′
j′ ⊕ Si

′
j′ , which means

that Gj(Li, IV i)⊕Gj′(Li
′
, IV i′) = P ij ⊕ P i

′
j′ . But since ~iv,~c are fixed, then so are all the P ij ’s, and

by the ε-xor universality of G, we get PrG[Gj(Li, IV i)⊕Gj′(Li
′
, IV i′) = P ij ⊕P i

′
j′] ≤ ε. As there are

exactly u plaintext blocks (including the checksums), we conclude that PrG[〈~c,G〉 /∈ E2] ≤ ε ·
(u

2

)
.

5Here it can certainly be the case that there is no choice of F that is consistent with these ~iv,~c, g. I.e., no F
maps all the M i

j ’s to the corresponding N i
j ’s. The analysis below, however, implies that for a random g, this rarely

happens.

7

(ii) We note that 〈~iv,~c〉 uniquely define the indices i and r in the event E3, and also uniquely define
P i and IV i. For event E3 not to happen, we must get(∑r

j=1 P
i
j

)
⊕ P iLi+1 = Sir+1 ⊕ SiLi+1 = Gr+1(Li, IV i)⊕GLi+1(Li, IV i)

By the definition of E0, we have r ≤ Li − 1, and therefore, by the ε-xor-universality of G we get
that the probability of the above equality holding is at most ε.

(iii) Bounding PrG[〈~iv,~c,G〉 /∈ E1] requires some careful case analysis.

Case (a) is when the IV of the “forged ciphertext” is different than all the IV i’s (which are the
blocks of ~iv). In this case, for any i ∈ {1, . . . ,m} and any j ∈ {1, . . . , Li} we have

N ′1 = N i
j ⇒ S′1 ⊕ C ′1 = Sij ⊕ Cij ⇒ Gj(Li, IV i)⊕G1(L′, IV ′) = C ′1 ⊕ Cij

Since we assume that IV ′ 6= IV i, then this happens with probability at most ε. The case of
j = Li + 1 is similar, except that here we need to get G0(Li, IV i) ⊕ G1(L′, IV ′) = C ′1 ⊕ Cij .
Similarly, to get N ′j = N ′1 (for some j > 1) we need Gj(L′, IV ′) ⊕ G1(L′, IV ′) = C ′1 ⊕ C ′j , which
again happens with probability at most ε.

The number of blocks that can “collide” with N ′1 is u from the Ci’s and v − 1 blocks from C ′, so
the probability of collision in this case is at most ε(u+ v− 1). Namely, for 〈~iv,~c〉 where IV ′ 6= IV i

for all i, we can set x = 1, and we get PrG[〈~c,G〉 /∈ E1] < ε(u+ v).

Case (b) is when for some i we have IV ′ = IV i. (As the pair 〈~iv,~c〉 is valid, then this i is unique,
and also C ′ 6= Ci.) Since IV ′ = IV i, and since for a given G the masks only depend on the IV, we
have Sij = Gj(Li, IV i) = Gj(L′, IV ′) = S′j for all j ≤ min(Li, L′)+1. Here we have a few sub-cases,
depending on the relations between C ′ and Ci.

Subcase (b1) is when the first block in which C ′, Ci differ, is not the last block in either of them.
In this case, let x be the index of the first block where they differ. Since Six = S′x, we get
N i
x = Cix ⊕ Six 6= C ′x ⊕ S′x = N ′x. For the other blocks in P i, we have N i

j = N ′x if and only if
Sij ⊕ S′x = Cij ⊕ C ′x (or Si0 ⊕ S′x = CiLi+1 ⊕ C

′
x for the last block). Since j 6= x (and x > 0)

each of these happen with probability at most ε.

Subcase (b2) is when C ′, Ci are of the same length, and they differ only in their last block.
Here we set x = Li + 1(= L′ + 1). As in the previous subcase, since Si0 = S′0, we have
N i
x = Cix ⊕ Si0 6= C ′x ⊕ S′0 = N ′x. Also, for all j ≤ Li(= L′) we have N i

j = N ′x if and only if
Sij ⊕ S′0 = Cij ⊕ C ′x, which happens with probability ε.

Subcase (b3) is when C ′ is longer than Ci (and they agree on all the blocks upto Li – but perhaps
not on block Li + 1). Here we set x = Li + 1, so we have N i

x = Cix ⊕ Si0 and N ′x = C ′x ⊕ S′x.
Hence we get that N i

x = N ′x if and only if Si0 ⊕ S′x = Cix ⊕ C ′x, and for all j < x, N i
j = N ′x if

Sij ⊕ S′x = Cij ⊕ C ′x. Again, each of these happen with probability at most ε.

Subcase (b4) is when Ci is longer than C ′ (and they agree on all the blocks upto L′ – but perhaps
not on block L′ + 1). Here we set x = L′ + 1, N ′x = C ′x ⊕ S′0. For all 1 ≤ j ≤ Li, we have
N i
j = Cij ⊕ Sij , so we still get N i

j = N ′x only if Sij ⊕ S′0 = Cij ⊕ C ′x, which happens with
probability at most ε.

8

However, for j = Li + 1 we have N i
j = CiLi+1 ⊕ S

i
0 and N ′x = C ′x ⊕ S′0, with Si0 = S′0. Thus, if

we had C ′L′+1 = CiLi+1 we would get N ′L′+1 = N i
Li+1 too.6 But recall that C ′ agrees with Ci

on all the blocks C ′0, . . . , C
′
L′ , so this is exactly the definition of event E0. Since we assume

that 〈~iv,~c〉 /∈ E0, then it must be that C ′L′+1 6= CiLi+1, and therefore also N ′L′+1 6= N i
Li+1.

As for the other ciphertexts Ci
′
i′ 6= i, and the other blocks in C ′, the same reasoning as for Case (a)

holds here too. We conclude that in either case, we have PrG[〈~c,G〉 /∈ E1] ≤ ε(u+v−1) < ε(u+v).
2

The last observation that we need for Lemma 3 is that conditioned on event E2, any ciphertext
vector ~c has the same probability of occuring as any other vector. Below we denote the concatena-
tion of all the ciphertexts C1 . . . Cm without the IV’s by ~C, and the concatenation of all the IV’s is
denoted ~IV . Then we have

Claim 5 For any fixed 〈~iv,~c, g〉 ∈ E2, it holds that Pr[~C = ~c | ~IV = ~iv, G = g] = 2−un, where the
probability is takes over the choice of F as a random function over {0, 1}n.

Proof: Since ~iv,~c and g are fixed, then so are all the M i
j ’s and N i

j ’s. We therefore get ~C = ~c if
and only if F (M i

j) = N i
j for all (i, j) in the appropriate ranges. Since 〈~iv,~c, g〉 ∈ E2, then the M i

j ’s
are all distinct (and there are u of them), and as F is random function, we have

Pr
[
F (M i

j(~c, g)) = N i
j(~c, g) for all i, j

]
=
∏
i,j

Pr
[
F (M i

j(~c, g)) = N i
j(~c, g)

]
= (2−n)u

2

We now put everything together. Let ~iv be any fixed vector of m distinct IV’s. Then,

Pr
[
E2 ∧ (E1 ∨ E3)

∣∣∣ ~IV = ~iv
]

=
∑
~c

Pr
F,G

[
~C = ~c ∧ 〈~iv,~c,G〉 ∈ E2 ∩ (E1 ∪ E3)

∣∣∣ ~IV = ~iv
]

=
∑
~c

(
Pr
G

[
〈~iv,~c,G〉 ∈ E2 ∩ (E1 ∪ E3)

∣∣∣ ~IV = ~iv
]

· Pr
F,G

[
~C = ~c

∣∣∣ ~IV = ~iv ∧ 〈~iv,~c,G〉 ∈ E2 ∩ (E1 ∪ E3)
])

(a)
=
∑
~c

Pr
G

[
〈~iv,~c,G〉 ∈ E2 ∩ (E1 ∪ E3)

]
· 2−un

= 2−un ·
(∑
~c s.t. 〈~iv,~c〉/∈E0

Pr
G

[
〈~iv,~c,G〉 ∈ E2 ∩ E1

]
+

∑
~c s.t. 〈~iv,~c〉∈E0

Pr
G

[
〈~iv,~c,G〉 ∈ E2 ∩ E3

])

Equation (a) holds, since the IV’s are chosen by the encryptor independently of the function G,
and since by Claim 5 we have probability 2−un for every individual tuple 〈~iv,~c, g〉 ∈ E2.

Claim 4 implies that each individual summand in the last expression is no less than 1−ε(
(u

2

)
+u+v),

and since there are exactly 2un such terms, we get

Pr
[
E1 ∨ E3

∣∣∣ ~IV = ~iv
]
≥ Pr

[
E2 ∧ (E1 ∨ E3)

∣∣∣ ~IV = ~iv
]
≥ 1− ε · (

(u
2

)
+ u+ v)

6If G had the additional property from Section 2.2, then since the lengths of C′, Ci are different, we would again
get that the probability of N ′L′+1 = N i

Li+1 is at most ε, and we won’t need the additional argument about E0.

9

As this holds for every fixed vector ~iv, the proof of Lemma 3 is complete. 2

Next we show that conditioned on either E1 or E3, the chances of the event Succ are very slim.

Lemma 6 Pr[Succ | E1 ∨ E3] ≤ 1/(2n − u− v).

Proof: We first show that Pr[Succ | E3] = 0. Consider some fixed 〈~iv,~c, g〉 ∈ E3. Recall that
event E3 is a sub-event of E0, where the “forged ciphertext” is C ′ = Ci0, . . . , C

i
r, C

i
Li+1 for some

(unique) i ∈ {1, . . . ,m} and some r ∈ {1, . . . , Li − 1}. Since the IV’s are the same, C ′0 = Ci0, then
the masks are also the same, namely S′j = Sij for all j. Therefore, for j = 1, . . . , r, we have

C ′j = Cij ⇒ N ′j = N i
j ⇒ M ′j = M i

j ⇒ P ′j = P ij

For the last block we have

C ′r+1 = CiLi+1 ⇒ N ′r+1 = C ′r+1 ⊕ S′0 = CiLi+1 ⊕ S
i
0 = N i

Li+1

⇒ M ′r+1 = M i
Li+1

⇒ P ′r+1 = M ′r+1 ⊕ S′r+1 = M i
Li+1 ⊕ S

i
r+1 = P iLi+1 ⊕ S

i
r+1 ⊕ SiLi+1

The “forged ciphertext” C ′ is valid only when
∑r+1
j=1 P

′
j = 0, which we can write as

(∑r
j=1 P

i
j

)
⊕(

P iLi+1 ⊕ S
i
r+1 ⊕ SiLi+1

)
= 0. But this contradicts 〈~iv,~c, g〉 ∈ E3.

We now show Pr[Succ | E1] ≤ 1
2n−u−v . We view an execution of the adversary A as follows: First

the mask-generation function G and the IV’s are chosen, and then the permutation F is chosen in
an “on-line” fashion: Whenever we need to assign a value of F (or F−1) at some new point, we
choose it at random from all the values that were not yet assigned to any point. Conditioned on
E1, the “forged ciphertext” induces a “unique block” N ′x that was not yet assigned an F−1 value.
When the adversary outputs this “forged ciphertext”, we first assign all the other F−1 values, and
assign F−1(N ′x) at the end. By the time we make this assignment, all the P ′j ’s except P ′x are already
assigned some values, and S′x is also assigned a value.

The “forged ciphertext” C ′ will be valid only if
∑L′+1
j=1 P ′j = 0. Since P ′x = S′x ⊕ F−1(N ′x), we can

re-write this condition as F−1(N ′x) = S′x ⊕
∑
j 6=x P

′
j . Since so far we assigned F or F−1 values at

exactly u+ v − 1 points, then

Pr[Succ | E1] = Pr

F−1(N ′x) = S′x ⊕
∑
j 6=x

P ′j

 =
1

2n − (u+ v − 1)
<

1
2n − u− v

2

This completes the proof of Theorem 2, since

Pr[Succ] ≤ Pr[¬(E1 ∨ E3)] + Pr[Succ | E1 ∨ E3] ≤ 2−n
(u

2

)
+ ε

((u
2

)
+ u+ v

)
+ 1

2n−u−v

2

3.2 Indistinguishability

Theorem 7 If F is a random permutation and G is an ε-xor-universal function, independent of F ,
then for any adversary A that asks exactly m plaintext-pair queries, each entry of the pair totalling

10

exactly u−m blocks, it holds that∣∣∣∣Pr[A outputs 1 | the oracle encrypts always the 1st entry]

− Pr[A outputs 1 | the oracle encrypts always the 2nd entry]
∣∣∣∣ < (2−n + 2ε)

(u
2

)
The probability is taken over the choice of F,G and the IV’s.

Proof (sketch): This proof is somewhat similar to (but considerably simpler than) the proof of
Theorem 2. We use similar notations, with the following exceptions: The “plaintext queries” of
the adversary are now pairs (of the same length), which we denote by (P i, Qi). As before, we have
M i
j = P ij ⊕ Sij , but now we also denote (M ′)ij = Qij ⊕ Sij . The N i

j variables can now be set either
as N i

j = F (M i
j) or N i

j = F ((M ′)ij), depending on which plaintext is being encrypted.

We also need to modify the event E2 from the proof of Theorem 2. In the modified event, not
only are all the M i

j ’s distinct, but all the (M ′)ij ’s are also distinct. (We do not need the M i
j to

be different than the (M ′)ij ’s though.) Similar to Claim 4(i), we can show that this event happens
with probability at least 1− 2ε

(u
2

)
.

Conditioned on this modified E2, we can show that every ciphertext vector ~c has probability exactly
2−un, regardless of which entry of the ciphertext pair is encrypted — assuming that F is a random
function over {0, 1}n. This is essentially the same as Claim 5 above. Hence, conditioned on E2, the
adversary has advantage zero when F is a random function, so its advantage when F is a random
permutation is at most 2−n

(u
2

)
.

We conclude that the total advantage of the adversary is at most Pr[¬E2]+2−n
(u

2

)
≤ (2−n+2ε)

(u
2

)
.

2

4 Concluding remarks

In this note we proved that it is sufficient for the key-generation function in Jutla’s construction
to be ε-xor-universal. We note, however, that one may be able to show tighter bounds if G is
stronger than just ε-xor-universal (for example, if the masks in different encryptions are completely
independent). Also, some of the technicalities in the proof may be somewhat easier to handle if
we make stronger assumptions about G. Below we briefly discuss some variations on the scheme
that was analyzed in Section 3, and explain how the analysis here can be adapted to handle these
variants.

G depends on F . The analysis above assumed that G is independent of F . In some variants,
however, it was suggested that G be computed from the IV using F itself (say, by setting Sj =
(j + 1) · F (IV)). To handle such variants, one needs to extend “event E2” from the proof of
Theorem 2: Not only do we need all the M i

j ’s to be distinct, but all the inputs to F (including the
IV’s) should be distinct. It is easy to see that under this event, the masks are independent of the
ciphertext vectors, and the rest of the proof follows.

G depends on F−1
. In yet other variants, computing G (as a function of C0) involves evaluating

F−1. For example, one of the variant that Jutla suggested, the masks are computed by choosing
at random a string S, computing the masks from F (S + 1), F (S + 2) . . ., and setting C0 = F (S).

11

To encompass this process within the framework of our analysis, we have to define the function G
as G(L,C0) = some-function-of(F (1 + F−1(C0)), F (2 + F−1(C0)), . . .).

The problem with this, is that in our analysis we prove Lemma 3 assuming that F is a random
function rather than a permutation (specifically, we used this assumption in Claim 5). This is
acceptable as long as we don’t use F−1 during the run of A, but here it does not seem to work. This
can sometimes be solved in an “ad hoc” manner, by considering an “alternative implementation”
of G that does not involve F−1, and showing that it produces a distribution close to the real
implementation.

Another solution is to forgo going through random functions altogether. This is done as follows:
We again extend “event E2”, this time insisting not only that the inputs to F (i.e., the M i

j ’s) be
distinct, but also that the N i

j ’s be distinct. Similarly to Claim 4, one can show that this event
happens with probability of roughly 1 − 2ε

(u
2

)
. Conditioned on this new event, we can now prove

a claim similar to Claim 5, even when F is a random permutation. The argument here is that
for any two fixed vectors ~m,~n, each consisting of exactly u distinct blocks, the probability that a
random permutation F maps ~m to ~n is exactly (2n− u)!/(2n)!, independently of the values of ~m,~n
themselves. This lets us complete the proof of Lemma 3 without going via random functions at all.

The “masked CBC” modes. The proof of the “masked CBC” modes is nearly identical to
the proof from Section 3 above: All the events are defined in exactly the same manner, and the
reasoning is also the same. The only difference is with the blocks M i

1: for a fixed pair 〈~iv,~c〉, the
block M i

1 is just ivi ⊕ P i1(~iv,~c), so we cannot appeal to the properties of the function G to prove
that it is different than other M i

j blocks. Instead, we must require that IV i itself is “unpredictable”
given IV 1 . . . IV i−1 and C1 . . . Ci−1. That is, for every fixed setting of iv1, . . . , ivi and c1 . . . ci−1,
if must be that Pr[IV i = ivi | ∀i′ < i, IV i′ = ivi

′
, Ci

′
= ci

′
] ≤ ε. This can easily be shown when

the IV’s are computed as an application of F to some nonce. We note that the treatment of all the
other M i

j blocks remains as before, since for j > 1 we have M i
j = Sij−1 ⊕ Cij−1(~iv,~c)⊕ P ij (~iv,~c).

Dealing with partial blocks. One feature that is unique to Rogaway’s OCB mode [4], is that
it also handles “partial blocks”. That is, the encrypted messages need not be of bit length which
is a multiple of the block length. Although it is trivial to accomplish this feat using padding, OCB
is unique in that it does not use padding. (That is, the length of the ciphertext equals that of the
plaintext – not counting the IV and the tag.)

We note here that if we relax the “not padding” requirement, and instead require only that we do
not pad messages whose length is already a multiple of the block length (so that we never introduce
an additional encryption operation), then a very slight modification to Jutla’s scheme can be used.
Specifically, we process padded and unpadded messages the same way, except that we use a different
mask for the last block. For example, we can use S0 as before when the message is unpadded, but
use S0 + ∆ when the message is padded, where ∆ is a random quantity which is part of the key.
It is not hard to see that the only part of the proof that is effected by this change is the treatment
of event E1 (specifically, Claim 4(iii)). It is also not hard to see that this claim still holds for the
modified scheme.

Acknowledgements. I thank Charanjit Jutla for many interesting conversations regarding his
schemes.

12

References

[1] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in Cryptology,
Asiacrypt 2000, volume 1976 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[2] V. D. Gligor and P. Donescu. Fast encryption authentication: XCBC encryption and XECB
authencation modes. presented in NIST’s workshop on modes of operations, in October, 2000.
See http://csrc.nist.gov/encryption/modes/workshop1/.

[3] C. Jutla. Encryption modes with almost free message integrity. In to appear in EURO-
CRYPT’2001. preliminiary version was presented in NIST’s workshop on modes of operations,
in October, 2000. See http://csrc.nist.gov/encryption/modes/workshop1/.

[4] P. Rogaway. OCB mode: Parallelizable authenticated encryption. pre-
sented in NIST’s workshop on modes of operations, in October, 2000. See
http://csrc.nist.gov/encryption/modes/workshop1/.

[5] P. Rogaway. Bucket hashing and its application to fast message authentication. In Advances in
Cryptology – CRYPTO ’95, volume 963 of Lecture Notes in Computer Science, pages 313–328.
Springer-Verlag, 1995.

13

