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To a cryptographer the claim that “ Shannon Security was achieved with keys smaller than the
encrypted message" appears unworthy of attention, much astheclaimof * perpetuum mobile” isto
a physicist. Albeit, from an engineering point of view solar cells which power satellites exhibit an
“ essential perpetuum mobile” and are of great interest. Smilarly for Shannon Security, asit is
exploredinthisarticle. Wediscuss encryption schemes designed to confound a diligent cryptanal yst
who works hisway from a captured ciphertext to a disappointing endpoint where more than one
otherwise plausible plaintexts are found to be associated with keys that encrypt them to that
ciphertext. Unlike some previous researchers who explored this equivocation as a special case of
existing schemes, thisapproach isaimed at devising a symmetric encryption for that purpose per se.

Introduction

The prevailing cryptographies feature committed ciphertexts. Ther effectivenessis based on an
expected computationd difficulty facing an adversary. Once this computational distance has been
crossed, the plaintext lays “naked” and non-repudiaive. This Sate of affairs suffers from certain
weaknesses. The most important one is the genera lack of proof with respect to computationa
difficulty."”) The threat of additiona relevant mathematical insight is everpresent. An adversary may
possess a combination of computing power and brain power that will invaidate the user’s assumptions
with respect to infeagbility of cryptanadyss. There may dso be specia case weaknesses. Certain keys,
or ciphertexts may be “weak” in some fashion. An adversary might discover such specia case
weskness, while the user might not. Psychologicaly spesking, nonrepudiation is troublesome. The user
might fed uncomfortable about having his confidentiad metters a the mercy of an adversary who might
eventudly dig it out.

If H(P ) isthe entropy of the plaintext space P, then cryptandyzing the prevailing committed ciphertexts

* Menezes, Oorschot and Vanstone [Ref 5] assert (page 32): “No public-key scheme has been proven to be secure
(the same can be said for block ciphers). The most effective public-key encryption schemes found to date have their
security based on the presumed difficulty of asmall set of number-theoretic problems.”
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isaprocesswhere the entropy generdly beginswith H(P )=lg(n), (nisthe sze of P ), and endswith
H(P )=0 (dl but asingle plaintext have logt their candidacy as the pre-encrypted message).

This committed ciphertext Stuation is consdered a necessary step-down from what has been defined by
Claude Shannon as information-theoretica secrecy, (“ Shannon Security”). Shannon [Ref 1] defined it
as a case Where knowledge of the ciphertext isnot a al helpful with respect to arriving at the pre-
encrypted plaintext. We may write:

(eg-1) H(P|C=?) = H(P|C=!)

The entropy of P isthe same whether the ciphertext C is not known (C=?) or known (C=!).
We may now concern oursalves with a case where after as much cryptanayss as desired:
(ineg-2) H(P|C=?) >H(P|C=!)>0

The knowledge of C diminishes the entropy of the plaintext space but it would never vanish. Such will
happenif P ,P, T P end up with probability 0.5 each, leading to H=1; or H=2 if four plaintext
messages end up with probability p=0.25 each. Since H(P )=0 isthe definition of a successful
cryptanaysis, it will be sufficient to insure H>0 to defeat an adversary. While Shannon Security (eg-1)
is preferable, one may settle for some point in the range [ H(P|C=?) ---- 0], to dlam what we designate
as “essentid  Shannon security” or say, “Meta Shannon Security”.

Shannon proved [Ref 1] that in order to achieve what he referred to as “ Perfect Security” (eg-1), the
encryption key can not be shorter than the encrypted message.  The familiar "One Time Pad" (OTP)
cipher exhibits Shannon Security: any ciphertext, C, can be matched with same sze plaintext, P, by
XOR-ing it with akey, K, which inturn,iscomputedas K= C I P.

We condder the genera case where dl the members of the plaintext set are of equa likelihood to be the
encrypted message: p=(1/n). Inthiscase H(P )=lg(n) and remains|g(n) even after capturing ciphertext
C —aslong asthe key, K, which was used to encrypt Pis of sze n. What happens when the key isone
bit shorter than the message? This would reduce the lowest entropy to Ig(n)-1. (Assuming for
convenience nis even). Thisis the highest security case for Meta Shannon Security:

(ineq-3) H(P|C=?) =1g(n) >H(P|C=!) =Ig(n)-1
If OTPisused then an (n-1) bits key may serve asa“seed” to generate an n-hit key to XOR P. Then+
th bit can be computed as, say, the parity of the (1) bits key. The computed n+bits key will be XOR-

ed with P to generate C. Thiswill reduce the number of plaintext candidatesin haf (hence H(P)=Ig(n)-
1)). The more bits we drop from the key, the lower the final entropy of the plaintext space, but aslong

Gideon Samid: “ Essential Shannon Security, etc...”§ (ESS-0d225) Page #-2



that it is not zero, one can claim that one has prevented a successful cryptanaysis.

Inapractical casetheinitid entropy of the plaintext space will be much lower than the Ig(n) maximum.
Let’s congder the extreme case where some circumgtantia information led to a state where B, > Ofor
kti,j and P=P-0.5. (Pi,F,Pk1 P) Inthat case apseudo-OTP with (n-1) bitskey will diminate
haf of the P space, and while the encrypted message, say P, will not be diminated, Fj, may, or may
not be eiminated (probability 50%), so the cryptanayst may or may not be able to identify P asthe true
message. If both P and B areincluded in the surviving (0.5n size) subset of P, then thismeta
Shannon security case is equivaent to the full (Perfect Security) Shannon case.

Consider now a case where on account of circumstantial evidence only m messages (1 P) end up
above a given probability threshold, T. If by using acertain key K of szes<n, dl of the m plausble
messages fal in the subset of surviving plaintext candidates, then the cryptandyst is facing the same
difficulty that would have been posed to her by afull Shannon Security system.

The competing clamant to the rank of “ Almost Shannon Security” is the notion of Semantic Security
defined as a case where for dl vaues of H(P ), (eg.1) holds againgt an adversary limited to polynomid
time. Much aswith Meta Shannon Security, Semantic Security opens the door for keys smaller than
the encrypted message.

All thisleads usto the condlusion that in redity akey smdler than the message may be as effective as
message-sze key. And if nat, its effectiveness may be at various levels above the committed ciphertext
date. If only (m1) messages end up in the surviving subset of P, then the effective security islower
than the perfect Shannon security case — but not much lower (especidly for large m).

All in dl, the above defined meta Shannon security offers parts or whole of the venerated Perfect
Shannon Security, using key of no predetermined minimum size.

Related Work:

Shannon security isaclassic chapter in cryptography and as such enjoys an honorable mention in every
serious, or semi-serious text book. The admitted theoretica security is quickly followed with statements
that lament the impracticdity of the method, owing to the size of the key. Since dl the prevailing
cryptographies festure committed ciphertexts, there was not much that was done in terms of tying that
theoretica Shannon security with practical dgorithms.

Ganetti, Dwork, Naor and Ostrovsky [ Ref 2] present an important discusson of Meta Shannon
Security. Their angleis*deniability”: the ability of asender, areceiver, or both, to credibly deny the
fact that plaintext P, was communicated, and fasdy maintain that a different message P, was the one
which the sender dispatched to the receiver. The purposethey seein the various schemes they propose
ismanly resistance to coercion, as in vote-buying, and in multi- party computation facing an adaptive
adversary. That work lists the One Time Pad as a case in point, and then offers a technique in which
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the true message P islisted dong n decoy messages Py, P, ... P,. Each such message is encrypted with
arespective key: Ko, K1, K»,...Kp, and the resulting ciphertexts. Gy, Cy, C,, ....C,, ae concatenated in
some order into Ct. When coerced, the sender (or the receiver) might choose any of the n decoy
messages, and claim that it was the “true’” one on account of the corresponding portion of Ct. Asthe
authors admit, thisis a very tedious practice and rather impracticdl.

The more interesting, and rather ingenious part of the Ganetti et d article [Ref 2] isfocused on norn+
determinigtic cryptography. When aciphertext bit ¢ is generated from plaintext bit p with the aid of a
random sequence r, the sender may be able to find a different, pseudorandom sequence, r*, such that ¢
can be claimed to represent afake plaintext bit p* . The authors envision a publicly known faking
agorithm:

(eg...4) r* =f(cr)

r* should exhibit the property:

(eg...5) c= E(p*,r*)

Where E isthe encryption agorithm. It must be necessary for the adversary to be fooled into
determining that r* istruly random (liker). Because of the probabiligtic nature of the scheme, the faking
clam must be associated with afaking error d(s), where sis the security parameter.  The article
describes sender-deniable public-key encryption for which the error, d, can be made assmal as
desred a the expense of the ciphertext sze which islinear with 1/d, and thus bloats into super-
polynomid sze.

The various schemes discussed in [Ref 2] gppear quite cumbersome for implementation (no doubt
protocol improvementswill follow suit), and are amed a a angle faked plaintext with which to establish
deniability. The proposed schemes don't appear to utilize deniability as a security element. Security
there remains vested in the expected computationd distance. By contrast, Meta Shannon Security ams
a preventing an adversary of achieving H(P )=0 regardiess of her resource abundance.

R. Ganetti, U. Feige, O. Goldreich and M. Naor [Ref 3] describe certain non-committing encryption.
That congtruct does not generdly dlow asender or arecelver to deny the true plaintext to an adversary
with possession of the ciphertext. It is rather a smulated ciphertext that is constructed for the purpose of
deniability.

Entropy Reduction Through Key Discrimination.

The origind plaintext space entropy Hy = H(P )=lg(n) is generdly reduced through assumptions of
language redundancy, contents-expectations and suchlike. It comes down to Hi= H(P |C=?). If
ciphertext C is generated through some Meta Shannon Security Encryption, then, even the most
unrestricted attack on C will depress the entropy to Hc= H(P |C=!)>0. Hc will be computed on
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account of those dements of P which were associated with non negligible probability before the
capture of C, and which are rlated to C through some key:

(eg...6) C = E(Pi,Ki)
wherei=1,2,...m ; m being the number of such plaintexts.

One must now mind the following question: To what extent is the new information (the identity of the m
keys) vduable in terms of further diminishing the entropy of P ?

Elaboration: The objective of an adversary isto diminate (m+1) plaintexts and identify the one plaintext
which corresponds to the key which is kept by the receiver. Whatever information that was available
with respect to the Py, P,,...Pm plaintexts was aready expressed in H1. The new information whichis
available only after athorough cryptanaysis of C istheidentity of the m keys. The question iswhat can
be deduced from this new information. In other words, a cryptanadyst is now concerned with the
entropy of K={K, K3, K3, ...Kny}. If H(K)=0 then H(P )=0.

It is therefore necessary for any viable Meta Shannon Security system to mind the identity of these K,
Ka,...Km keys (namedy: the equivocation keys). Their vaue should not undo the resdud entropy which
givesthis encryption its strength.

For example consider a stream cipher where a message Pi of size n hits, is encrypted with key Ki into
ciphertext C of same size (n). And let Kj be akey which encryptsH into C:

(e9...7) C = E(Ki,Pi) = E(K},F)

Let Ki beof szeshits(s<<n). Andlet Kj beof szen. Intha case P will look much more plausble
than Fj, since we know how easy it is to match a message-size key with a given message.

Constructing Meta Shannon Security Encryption

The following congtruction isingpired by the notion that the basic reason for the prevaence of
committed ciphertextsis thet they are generated by arather complex agorithm. A smple encryption
agorithm might be easier to work with for the purpose of constructing Meta Shannon Security. Alas, if
the dgorithms P < - C are to be smple, then where woud the necessary complexity resde? (to foil
an adversary). Looking around, on€ s finger naturaly points to the left-out dement which has not
undergone conceptua changes in decades. the key.

The cryptographic key, K, and the encryption agorithm E are the two eements that are necessary for P
to be computed into C. While the intuitive notion of complexity has traditionaly been divided between

K and E, the two have seen a clear divison with respect to exposure. Following Kerckhoff’ s principle
Eisfully in the open and K isfully secret. Moreover, afunctiond definition of K may be: The
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cryptographic key K, isthe sum tota of what must be changed in order to fully recondtitute a
compromised encryption system — regardless of the nature of the compromise. Accordingly, the more
complexity and variability in K, the more secure the system. (Since anew K meansabig change). For
some reason, whenever the key needed more complexity, it was supplied in terms of additiond bitsin
the sequence. When now we look for the key to shoulder more of that stuff, we may seek to broaden
the sequentid order into a network.

Specificaly, consder agraph K, constructed with Kv vertices which are interconnected with Ke
directiona edges. Further consider the case where the plaintext, P, is represented via an dphabet Av
comprised of Lv symbols (letters), and where the ciphertext C is represented via an aphabet Ae
comprised of Le symbols (letters). Such representation, of course, does not diminish the generdity of P
and C. The graph K is congtructed so that every vertex can be connected through a directiona edge to
any other vertex. We shdl mark each vertex with asingle letter from the Av aphabet, and mark each
edge with asingle letter from the Ae aphabet. The common key which isasmple binary sequence can
be viewed as a specia case for the K-map, (or K-graph). Inthiscase Av:[0,1], and Ae[R], (R for
right pointing edge). Each vertex (except the rightmost), points to the next vertex (only).

We now iterate two (very mild) restrictions on this construction:

Restriction 1 (R-1): No two edges which emanate from the same vertex would be marked with the
same symbal.

Restriction 2 (R-2): Also dubbed, the “full access condition” isinformally described asfollows From
every vertex in the graph there should be accessto dl other lettersin the Av dphabet. Meaning: if aa
given vertex marked by symbol X1 Av, does not have an edge leading from it to any choiceY T Av (Y
[0 X) marked vertex, then that given vertex will be edge-connected to another X-marked vertex which
will either have an edgeto aY marked vertex, or would be connected to yet another X-marked vertex,
and so on until one such X-marked vertex will be edge-connected to a Y-marked vertex.

Apart from these two redtrictions, K can be of any size, complexity and interconnectivity.

The Encryption Algorithm, E:

Do:

E-1: Represent plaintext P through aphabet Av’ which is constructed as aphabet Av minus the Lv™"
letter. Pisthereby represented as P

E-2: Eliminate letter duplication in P’ by interjecting the Lv" |etter between any two consecutive
edementsin P which are marked by the same letter (symboals) in P. ThischangesP to P".

E-3: Mark apath on K such that it corresponds to the Av letters that constitute P’. The path should
connect vertices through existing edges. Redtriction R-2 will insure that whatever the sequencein P,
there would be at least one path that would reflect that order, either on aoneto one basis (letter in P’
matched with avertex in K), or by subgtituting some lettersin P” with a string of same letter. In case of
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such subdtitution (resulting in P), there would be no confusion as for transforming P’ = P’ since P
was congructed to be free of any letter duplication. Thus al consecutive strings of same letter in P
will be reduced to asingle (same) letter, thereby reconstructing P” from P’

E-4: Read off the edges that capture the path that was marked in E-3. That sequence is the ciphertext.
C.

To decrypt C into P with the help of K, one would need to know the sarting vertex, and from there
use the C sequence to identify the path in E-3 which ingtantly yields P”’. P’ as seen above, readily
generatesP’ andsoon: C> P > P > P 2> P.

An adversary capturing C and ignorant about K might try to guessit. In the process of trying out
possible maps, the adversary will find various maps which decrypt C into severd plausble plaintexts.
Hence: Meta Shannon Security.

As described above the transformation C <> P is based on the notion that a sequence on the graph
can be described either by identifying the sequence vertices, or by listing the respective edges. By
letting the vertices reflect the plaintext and by alowing the edgesto reflect the ciphertext, the
transformation becomes a very quick process (both ways) provided the graph K is at hand. It remains
an undecided question without that graph. The latter will be proven by congtruction.

Tailored Key Encryption (TaKE). The general concept was presented in [Ref 4]. Oneis posing the
chdlengeto find akey K so that for a given encryption agorithm E, aknown ciphertext C, and a
chosen plaintext P, it will hold that:

(eq.8) C = E(P,K)

Applying to the above described encryption agorithm we proceed below:

Chalenge: Given C asasequence of letters of Ae, and given P’ as anon-repeat sequence constructed
from aphabet Av, find amap K that will satisfty C = E(P’,K). P’ ischosen to be of same or smaler
Sze with respect to C.

A smple solution will proceed asfollows:

If P’ issmdler than C, then replace some lettersin P’ with astring of severd consecutive letters (all of
the same symbol). Do so until the size of the resulting P’ isequd to C. Let n bethat size.

al. Congtruct n vertices marked as the sequencein P’

a2. Connect the verticesin (al) with edges marked according to the sequencein C

a3. Add additiond verticesand edges, at will, to comply with restriction R-1, and R-2.
This createsagraph K which according to the above described procedure does satisfy
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C=E(P’ K) asrequired.

While thiswill work, it is not very encouraging Snceit has the flavor of One Time Pead. The key here will
even be larger than the encrypted message.

We will show now a procedure to cut down the size of K (with no preset lower limit):

bl. Congruct thefull szeK asin al, a2 above.

b2. Perform as many back-pointing procedures as possible. A back-pointing procedure will be
described here in a sample case which is easy to formalize. The advantage in the sdlected description is
that it israther intuitive.

Let X,Y,ZT Av,andlet P” contain asequence XYZXZ:
(eq.....9. P"= ... XYZXZ.......... = &X-Y-Z-X-Z-a
where 4 and & represent the leading and trailing strings of P

Now remove the edge that connects the first Z with the second X inthe P”’ string, and subdtitute it with
an edge that connectsthat Z with thefirst X. Then congtruct a vertex marked Z (for the second Z), and
draw an edge from the first X to the second Z. There is a chance that the symbol corresponding to that
edge (from C) will be the same as the one that leads from the first X tothe Y vertex. In that case, this
procedure will not work for this instance, sinceit violates restriction R-1. If that conflict does not
happen then the condruction of K will continue from the first X. An edge will point from it to aZ vertex
(the 2" Z), and from there to & In case of a conflict as above, smply try with another instance of such
back-pointing. A single such instance, will reduce the size of K. There arein general many opportunities
for back-pointing. Each such occurrence cuts the K size by one vertex. Intuitively this procedure will
reduce the key size dramaticaly. The exact odds depending on thesizeof Av, and Ae, andon P,
and C. Complete the process with step (a3).

Note that the above construction smulates a chosen plaintext attack. An adversary trying to build the
key that connects a known plaintext and a matching ciphertext. This most advantageous attack option
chdlenges the attacker with the full measure of key equivocation as is evident from the above
procedure.

While demondrating Meta Shannon Security, as shown above, this key-heavy, dgorithm-light
procedure offers additiond interesting properties. One was mentioned aready: the computationd load
for bonafide trandation back and forth between ciphertext and plaintext (C <> P) isextremdy fad,
opening up some new vigtas and gpplications. Such are (1) telecommunication (cellular devices), ingtant
messaging, VPN, etc.; (2) Ingant encryption for files asthey are being saved on disk, and equally fast
decryption as they are loaded to an application.
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Another isthe fact that in any given encryption, it is not clear to an adversary if the entire key materid
has been used or just apart (even asmdl part) thereof. Recall step (a3) above. This characteristics
means that even if somehow an adversary was able to deduce the correct key that was used in the past,
she might till bein the dark versus some future encryption where an unused portion of that key isbeing
utilized.

Y et another important attribute is the one-to-many encryption characterigtics, combined with many-to-
one decryption. K can be congtructed with azone of interconnected vertices al marked with the same
letter X T Av. One (or more) of these verticesis also connected to avertex marked Y (see R-2).

Now consider: P’ =34X,Y,4 where aand aare leading and trailing stringsin P’. One could chart
numerous paths in which the zone of X-marked verticesis being traversed in any which way, aslong as
it eventualy emergesinto a'Y-marked vertex. If such traversals are comprised of t X-marked vertices
then the corresponding P string will look as:

(eqg. 10) P = &4 X X ... S XY, a
{€ t tinmes >}

And regardless of the value of t, the reverse transformation P’ = P’ will be unequivoca.

This important degree of freedom (which can be exercised for any letter in P’) can be used ether ina
determinigtic fashion, or randomly. The laiter will endow this encryption with the same advantages that
are known for other probahilistic encryptions. A given plaintext will gppear as different ciphertexts each
timeit is encrypted. The deterministic option offersahost of possihilitiesin the category of digitd
watermarks, and sublimina messages.

Wrapping up thislimited presentation, it bears to mention that the very same procedure that is vying for

the venerated rank of “amost a Shannon grade’ is dso gpplicable in fast and small setting. Consder:
Av:{X)Y,ZW}; Ae {UD,RL}. Onemay congtruct a 3x3 matrix like:

Ksxs =

NN X

X
\W
V4

< <<

And define the edges as follows: (definition d.1) each vertex is connected to the vertex Ieft to it (if it
exists) with an edge marked L; connected to the vertex right to it (if it exists) with an edge marked R;
connected to the vertex below it (if it exists) with an edge marked D, and connected to a vertex above it
(if it exists) with an edge marked U.

Thissmple K33 key satisfies R-1,2, and is capable of encrypting and decrypting any size plaintext. For
asuffidently long P, this small K=K 3,3 will not exhibit Meta Shannon Security snce each vertex will be
vidited severd times over, and thus the ciphertext here will become “committed”. Yet, onecould
construct akey by concatenating two Ksys keys (or some other extension), and only after a certain time
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point, or encryption-length point, actualy utilize the extended key part. Hence an adversary who will
crack K,z will be surprised when the new key part comesinto play.

Summary:

We have presented a key-heavy, agorithm:-light encryption procedure which exhibits Meta Shannon
Security defined as a Stuation where a cryptanayst can not pinpoint asingle member of the plaintext
space (entropy zero), as the message that generated a captured ciphertext. There remain two or more
viable plaintext candidates, and that equivocation can not be resolved without possession of the
encryption key, regardless of any measure of computing power. This fundamental equivocation
suggests some interest in exploring a proper role for this method within the heavy-duty end of the
encryption spectrum. The smple and quick agorithm, in turn, renders this method into a prospective
evauation item for gpplications where speed is of the essence. It was also shown that this procedure
lendsitsdf to digitd watermarking and related gpplications.
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