
Session-Key Generation using Human Passwords Only∗

Oded Goldreich†

Department of Computer Science
Weizmann Institute of Science

Rehovot, Israel.
oded@wisdom.weizmann.ac.il

Yehuda Lindell‡

Department of Computer Science
Bar-Ilan University

Ramat Gan, Israel.
lindell@cs.biu.ac.il

January 25, 2005

Abstract

We present session-key generation protocols in a model where the legitimate parties share
only a human-memorizable password, and there is no additional setup assumption in the net-
work. Our protocol is proven secure under the assumption that enhanced trapdoor permutations
exist. The security guarantee holds with respect to probabilistic polynomial-time adversaries
that control the communication channel (between the parties), and may omit, insert and modify
messages at their choice. Loosely speaking, the effect of such an adversary that attacks an exe-
cution of our protocol is comparable to an attack in which an adversary is only allowed to make
a constant number of queries of the form “is w the password of Party A”. We stress that the
result holds also in case the passwords are selected at random from a small dictionary so that
it is feasible (for the adversary) to scan the entire directory. We note that prior to our result, it
was not known whether or not such protocols were attainable without the use of random oracles
or additional setup assumptions.

Keywords: Session-key generation (authenticated key-exchange), mutual authentication proto-
cols, human-memorizable passwords, secure two-party computation, non-malleable commitments,
zero-knowledge proofs, pseudorandom generators and functions, message authentication schemes.

∗An extended abstract of this work appeared in Crypto 2001.
†Supported by MINERVA Foundation, Germany.
‡This work was carried out while the author was at the Weizmann Institute of Science.

Contents

1 Introduction 3
1.1 What Security May be Achieved Based on Passwords 4
1.2 Comparison to Other Work . 5
1.3 Techniques . 8
1.4 Discussion . 9
1.5 Organization . 9

2 Formal Setting 10
2.1 Basic Notations . 10
2.2 (1− ε)-Indistinguishability and Pseudorandomness 10
2.3 Authenticated Session-Key Generation: Definition and Discussion 11

2.3.1 Motivation for the definition . 12
2.3.2 The actual definition . 13
2.3.3 Properties of Definition 2.4 . 15
2.3.4 Augmenting the definition . 16
2.3.5 Session-key generation as secure multiparty computation 20

2.4 Our Main Result . 20
2.5 Multi-Session Security . 20

2.5.1 Sequential executions for one pair of parties 20
2.5.2 Concurrent executions for many pairs of parties 24

3 Our Session-Key Generation Protocol 28
3.1 The Protocol . 28
3.2 Motivation for the Protocol . 30

3.2.1 On the general structure of the protocol . 30
3.2.2 On some specific choices . 32

3.3 Properties of Protocol 3.2 . 33

4 Analysis of Protocol 3.2: Proof Sketches 34
4.1 Preliminaries . 34
4.2 Organization and an Outline of the Proof . 35
4.3 The Security of Protocol 3.2 for Passive Adversaries 37
4.4 The Key-Match Property . 39

4.4.1 Case (1) – The unsynchronized case . 40
4.4.2 Case (2) – The synchronized case . 42

4.5 Simulating the Stand-Alone (A,C) Execution . 43
4.6 Simulating the (C,B) Execution . 45

4.6.1 Step 1: Simulating the (C,B 6dec) execution . 45
4.6.2 Step 2: Simulating B’s decision bit . 46

4.7 The Security of Protocol 3.2 for Arbitrary Adversaries 49

5 Full Proof of Security for Passive Adversaries 51

1

6 Full Proof of the Key-Match Property 54
6.1 Proof of Lemma 4.6 (The Unsynchronized Case) 54

6.1.1 Simulating A’s zero-knowledge proof . 55
6.1.2 Proof of a modified lemma 4.6 (when C interacts with A6zk and B′) 62

6.2 Proof of Lemma 4.7 (The Synchronized Case) . 68

7 Simulating the Stand-Alone (A,C) Execution 71

8 Simulating the (C, B) Execution 75
8.1 Simulating the (C,B 6dec) Execution . 76
8.2 Simulating B’s Accept/Reject Decision Bit . 77
8.3 Conclusion . 80

References 80

A Cryptographic Tools 84
A.1 Secure Two-Party Computation . 84
A.2 String Commitment . 87
A.3 Non-Malleable String Commitment . 88
A.4 The Zero-Knowledge Proof of Richardson and Kilian 89
A.5 Seed-Committed Pseudorandom Generators . 91
A.6 Message Authentication Codes (MACs) . 91

2

1 Introduction

This work deals with the oldest and probably most important problem of cryptography: en-
abling private and reliable communication among parties that use a public communication channel.
Loosely speaking, privacy means that nobody besides the legitimate communicators may learn the
data communicated, and reliability (or integrity) means that nobody may modify the contents of
the data communicated (without the receiver detecting this fact). Needless to say, a vast amount
of research has been invested in this problem. Our contribution refers to a difficult and yet natural
setting of two parameters of the problem: the adversaries and the initial set-up.

We consider only probabilistic polynomial-time adversaries. Still, even within this framework,
an important distinction refers to the type of adversaries one wishes to protect against: passive
adversaries only eavesdrop the channel, whereas active adversaries may also omit, insert and mod-
ify messages sent over the channel. Clearly, reliability is a problem only with respect to active
adversaries (and holds by definition w.r.t passive adversaries). We focus on active adversaries.

The second parameter mentioned above is the initial set-up assumptions. Some assumption of
this form must exist or else there is no difference between the legitimate communicators, called Alice
and Bob, and the adversary (which may otherwise initiate a conversation with Alice pretending to
be Bob). We list some popular initial set-up assumptions and briefly discuss what is known about
them.
Public-key infrastructure: Here one assumes that each party has generated a secret-key and

deposited a corresponding public-key with some trusted server(s). The latter server(s) may be
accessed at any time by any user.
It is easy to establish private and reliable communication in this model (by a straightforward use
of the public-key schemes, cf. [21, 52]). (However, even in this case, one may want to establish
“session-keys” as discussed below; for example, see [49, 7, 3, 53, 18]).)

Shared (high-quality) secret keys: By high-quality keys we mean strings coming from distri-
butions of high entropy (e.g., uniformly chosen 128-bit long strings, uniformly chosen 1024-bit
primes, etc). Furthermore, these keys are selected by a suitable program, and cannot be mem-
orized by humans.
In case a pair of parties shares such a key, they can conduct private and reliable communication
(either directly (cf. [13, 56, 29]) or by first establishing a session-key (cf. [6, 7])).

Shared (low-quality) secret passwords: In contrast to high-quality keys, passwords are strings
that may be easily selected, memorized and typed-in by humans. An illustrating (and simplified)
example is the case in which the password is selected uniformly from a relatively small dictionary;
that is, the password is uniformly distributed in D ⊂ {0, 1}n, where |D| = poly(n).
Note that using such a password in the role of a cryptographic key (in schemes as mentioned
above) will yield a totally insecure scheme. A more significant observation is that the adversary
may try to guess the password, and initiate a conversation with Alice pretending to be Bob
and using the guessed password. So nothing can prevent the adversary from successfully im-
personating Bob with probability 1/|D|. But can we limit the adversary’s success to about this
much?

The latter question is the focus of this paper.

Session-keys: The problem of establishing private and reliable communication is commonly re-
duced to the problem of generating a secure session-key (a.k.a “authenticated key exchange”).

3

Loosely speaking, one seeks a protocol by which Alice and Bob may agree on a key (to be used
throughout the rest of the current communication session) so that this key will remain unknown
to the adversary.1 Of course, the adversary may prevent such agreement (by simply blocking all
communication), but this will be detected by either Alice or Bob.

1.1 What Security May be Achieved Based on Passwords

Let us consider the related (although seemingly easier) task of mutual authentication. Here Alice
and Bob merely want to establish that they are talking to one another. Repeating an observation
made above, we note that if the adversary initiates t ≤ |D| instances of the mutual authentication
protocol, guessing a different password in each of them, then with probability t/|D| it will succeed
in impersonating Alice to Bob (and furthermore find the password). The question posed above is
rephrased here as follows:

Can one construct a password-based scheme in which the success probability of any
probabilistic polynomial-time impersonation attack is bounded by O(t/|D|)+µ(n), where
t is the number of sessions initiated by the adversary, and µ(n) is a negligible function
in the security parameter n?

We resolve the above question in the affirmative. That is, assuming the existence of trapdoor
one-way permutations, we prove that schemes as above do exist (for any D and specifically for
|D| = poly(n)). Our proof is constructive. We actually provide a protocol of comparable security
for the more demanding goal of authenticated session-key generation.

Password-based authenticated session-key generation: Our definition for the task of au-
thenticated session-key generation is based on the simulation paradigm. That is, we require that a
secure protocol emulates an ideal execution of a session-key generation protocol (cf. [2, 45, 16]). In
such an ideal execution, a trusted party hands identical, uniformly distributed session-keys to the
honest parties. The only power given to the adversary in this ideal model is to prevent the trusted
party from handing keys to one of the parties. (We stress that, in this ideal model, the adversary
learns nothing of the parties’ joint password or output session-key).

Next, we consider a real execution of a protocol (where there is no trusted party and the ad-
versary has full control over the communication channel between the honest parties). In general, a
protocol is said to be secure if real-model adversaries can be emulated in the ideal-model such that
the output distributions are computationally indistinguishable. Since in a password-only setting
the adversary can always succeed with probability 1/|D|, it is impossible to achieve computational
indistinguishability between the real model and above-described ideal model (where the adversary
has zero probability of success). Therefore, in the context of a password-only setting, an authen-
ticated session-key generation protocol is said to be secure if the above-mentioned ideal-model
emulation results in an output distribution that can be distinguished from a real execution by (a
gap of) at most O(1/|D|) + µ(n). (We note that in previous definitions, the probability of adver-
sarial success was made strictly 1/|D| rather than O(1/|D|); we do not know how to achieve this
stricter requirement.)

1We stress that many famous key-exchange protocols, such as the one of Diffie and Hellman [21], refer to a passive
adversary. In contrast, this paper refers to active adversaries.

4

Main result (informally stated): Assuming the existence of 1–1 one-way functions and collec-
tions of enhanced trapdoor one-way permutations,2 there exists a secure authenticated session-key
generation protocol in the password-only setting.

We stress that the above (informal) definition implies the intuitive properties of authenticated
session-key generation (e.g., security of the generated session-key and of the initial password). In
particular, the output session-key can be distinguished from a random key by (a gap of) at most
O(1/|D|) + µ(n). This implies that when using the session-key as a key to a MAC, for example,
the probability that any polynomial-time adversary can generate a valid MAC-tag to a message
not sent by the legitimate party is small (i.e., O(1/|D|) + µ(n)). We stress that the session-key
can be used for polynomially-many MACs and the probability that the adversary will forge even
one message still remains bounded by O(1/|D|) + µ(n). Likewise, when using the session key for
private-key encryption, the probability that the adversary learns anything about the encrypted
messages is small. That is, for every partial-information function, the adversary can guess the
value of the function applied to the messages with O(1/|D|) + µ(n) advantage over the a-priori
probability. This success probability is exactly the same (ignoring µ(n) and constant factors) as for
the naive adversary who just attempts to guess the password and succeeds with probability 1/|D|.
See Section 2.3.3 for more discussion.

In addition to the above-described security of the session-key, the definition guarantees that the
distinguishing gap between the parties’ joint password and a uniformly distributed element in D is
at most O(1/|D|) + µ(n). (As we have mentioned, the fact that the adversary can distinguish with
gap O(1/|D|) is an inherent limitation of password-based security.) The parties are also guaranteed
that, except with probability O(1/|D|)+µ(n), they either end-up with the same session-key or detect
that their communication has been tampered with. Our definition also implies additional desirable
properties of session-key protocols such as forward secrecy and security in the case of session-key
loss (or known-key attacks). Furthermore, our protocol provides improved (i.e., negligible gap)
security in case the adversary only eavesdrops the communication (during the protocol execution).

We mention that a suitable level of indistinguishability (of the real and ideal executions) holds
when t sessions (referring to the same password) are conducted sequentially: in this case the
distinguishing gap is O(t/|D|) + µ(n) rather than O(1/|D|) + µ(n) (which again is optimal). This
holds also when any (polynomial) number of other sessions w.r.t independently distributed passwords
are conducted concurrently to the above t sessions.

Caveat: Our protocol is proven secure only when assuming that the same pair of parties (using
the same password) does not conduct several concurrent executions of the protocol. We stress that
concurrent sessions of other pairs of parties (or of the same pair using a different password), are
allowed. See further discussion in Sections 1.4 and 2.5.

1.2 Comparison to Other Work

The design of secure mutual authentication and key-exchange protocols is a major effort of the
applied cryptography community. In particular, much effort has been directed towards the design
of password-based schemes that should withstand active attacks.3 An important restricted case of

2See [28, Appendix C.1] for the definition of enhanced trapdoor permutations. We note that the “enhanced
property” is used in all known constructions of general protocols for secure two-party computation. We also note
that our assumption regarding 1–1 one-way functions relates to a single function with an infinite domain, and so is
not implied by collections of permutations; see [31].

3A specific focus of this research has been on preventing off-line dictionary attacks. In such an off-line attack, the
adversary records its view from past protocol executions and then scans the dictionary for a password consistent with

5

the mutual authentication problem is the asymmetric case in which a human user authenticates
himself to a server in order to access some service. The design of secure authentication mechanisms
based only on passwords is widely recognized as a central problem of computer practice and as such
has received much attention.

The first protocol suggested for password-based session-key generation was by Bellovin and
Merritt [9]. This work was very influential and became the basis for much future work in this
area [10, 54, 38, 43, 50, 55]. However, these protocols have not been proven secure and their
conjectured security is based on mere heuristic arguments. Despite the strong need for secure
password-based protocols, the problem was not treated rigorously until quite recently. For a survey
of works and techniques related to password authentication, see [44, 40] (a brief survey can be
found in [36]).

A first rigorous treatment of the password-based authentication problem was provided by Halevi
and Krawczyk [36]. They actually considered an asymmetric hybrid model in which one party (the
server) may hold a high-quality key and the other party (the human) may only hold a password.
The human is also assumed to have secure access to a corresponding public-key of the server
(either by reliable access to a reliable server or by keeping a “digest” of that public-key, which
they call a public-password).4 The Halevi–Krawczyk model capitalizes on the asymmetry of the
authentication setting, and is inapplicable to settings in which communication has to be established
between two humans (rather than a human and a server). Furthermore, requiring the human to
keep the unmemorizable public-password (although not secretly) is undesirable. Finally, we stress
that the Halevi–Krawczyk model is a hybrid of the “shared-key model” and the “shared-password
model” (and so their results don’t apply to the “shared-password model”). Thus, it is of both
theoretical and practical interest to answer the original question as posed above (i.e., without the
public-password relaxation): Is it possible to implement a secure authentication mechanism (and
key-exchange) based only on passwords?

Positive answers to the original problem have been provided in the random oracle model. In this
model, all parties are assumed to have oracle access to a totally random (universal) function [5].
Secure (password-based) authenticated key-exchange schemes in the random oracle model were
presented in [4, 15]. The common interpretation of such results is that security is “likely” to hold
even if the random oracle is replaced by a (“reasonable”) concrete function known explicitly to all
parties.5 We warn that this interpretation is not supported by any sound reasoning. Furthermore,
as pointed out in [19], there exist protocols that are secure in the random oracle model but become
insecure if the random function is replaced by any specific function (or even a function uniformly
selected from any family of functions).

To summarize, this paper is the first to present session-key generation (as well as mutual au-
thentication) protocols based only on passwords (i.e., in the shared-password model), using only
standard cryptographic assumptions (e.g., the existence of trapdoor one-way permutations, which
in turn follows from the intractability assumption regarding integer factorization). We stress that

this view. If checking consistency in this way is possible and the dictionary is small, then the adversary can derive
the correct password. Clearly, a secure session-key generation protocol (as informally defined above) withstands any
off-line dictionary attack.

4The public-password is not memorizable by humans, and the human is supposed to carry a record of it. The
good point is that this record need not be kept secret (but rather merely needs to be kept reliably). Furthermore,
in the Halevi–Krawczyk protocol, the human is never asked to type the public-password; it is only asked to compare
this password to a string sent by the server during the protocol.

5An alternative interpretation is to view the random oracle model literally. That is, assume that such oracle
access is available to all parties via some trusted third party. However, in such a case, we are no longer in the “trust
nobody” model in which the question was posed.

6

prior to this work it was not clear whether such protocols exist at all (i.e., outside of the random
oracle model).

Independent related work. Independently of our work, Katz, Ostrovsky and Yung [39] pre-
sented a protocol for the task of session-key generation based on passwords. Their protocol is in-
comparable to ours: it uses a stronger set-up assumption and a stronger intractability assumption,
but yields a seemingly practical protocol that is secure in a stronger concurrent sense. Specifically:
• Most importantly, Katz et al. [39] use a stronger set-up assumption than us. In addition to joint

passwords, they require that all parties have access to a common reference string, chosen by
some trusted third party. Although this is a stronger assumption than that of our password-only
model, it is still significantly weaker than other models that have been studied (like, for example,
the Halevi–Krawczyk model).6

• Their protocol is proven secure under a specific assumption. Specifically, they use the Decisional
Diffie-Hellman assumption, which seems stronger than more standard assumptions such as the
intractability of factoring and of extracting discrete logarithms. In contrast, we use a general
complexity assumption (i.e., the existence of enhanced trapdoor permutations).

• Their protocol is highly efficient and could even be used in a practical setting. In contrast,
our protocol is unsuitable for practical use, although it may eventually lead to practical conse-
quences.

• Their protocol is secure in an unrestricted concurrent setting, whereas our protocol is shown
to be secure only when concurrent executions are not allowed to use the same password (see
Section 2.5).

Key exchange protocols. In the above description of prior work, we have focused only on
papers dealing with the issue of password-based authentication and key-exchange. We note that
there has been much work on this problem in the setting where the parties share high entropy
keys, both with respect to determining appropriate definitions and constructing secure protocols.
See [44, Chapter 12] for a survey of some of these works.

Necessary conditions for mutual authentication: Halevi and Krawczyk [36] proved that
mutual authentication in the shared-password model implies (unauthenticated) secret-key exchange,
which in turn implies one-way functions. Subsequently, Boyarsky [14] pointed out that, in the
shared-password model, mutual authentication implies oblivious transfer.7 One implication of the
above is that finding a solution to this problem that relies on only “black-box” use of one-way
functions is hard; in particular, it would constitute a proof that P 6= NP [37].

6We remark that the setup assumption of a common reference string is practical in some settings, but very
restrictive in others. For example, a company that wishes to implement secure login for its employees would be
trusted to correctly choose the reference string. Furthermore, within such a closed setting, this string could be securely
distributed to all employees. However, in a general setting, such trust is highly undesirable. This is especially true
since in the protocol of [39], if an adversarial party chooses the reference string, it can learn all the parties’ passwords
by merely eavesdropping on the communication.

7Oblivious transfer is known to imply (unauthenticated) secret-key exchange [41]. On the other hand, Gertner
et al. [26] have shown that secret-key exchange does not imply oblivious transfer under black-box reductions.

7

1.3 Techniques

One central idea underlying our protocol is due to Naor and Pinkas [48]. They suggested the follow-
ing protocol for the case of passive adversaries, using a secure protocol for polynomial evaluation.8

In order to generate a session-key, party A first chooses a random linear polynomial Q(·) over a
large field (which contains the dictionary of passwords). Next, A and B execute a secure polynomial
evaluation in which B obtains Q(w), where w is their joint password. The session-key is then set
to equal Q(w).

In [14] it was suggested to make the above protocol secure against active adversaries, by using
non-malleable commitments. This suggestion was re-iterated to us by Moni Naor, and in fact our
work grew out of his suggestion. In order to obtain a protocol secure against active adversaries, we
augment the above-mentioned protocol of [48] by several additional mechanisms. Indeed, we use
non-malleable commitments [23], but in addition we also use a specific zero-knowledge proof [51],
ordinary commitment schemes [11], a specific pseudorandom generator (of [13, 56, 12]), and a mes-
sage authentication scheme (MAC). The analysis of the resulting protocol is very complicated, even
when the adversary initiates a single session. As explained below, we believe that these complica-
tions are unavoidable given the current state-of-art regarding concurrent execution of protocols.

Although not explicit in the problem statement, the problem we deal with actually concerns
concurrent executions of a protocol. Even in case the adversary attacks a single session among
two legitimate parties, its ability to modify messages means that it may actually conduct two
concurrent executions of the protocol (one with each party).9 Concurrent executions of some
protocols were analyzed in the past, but these were relatively simple protocols. Although the
high-level structure of our protocol can be simply stated in terms of a small number of modules,
the currently known implementations of some of these modules are quite complex. Furthermore,
these implementations are not known to be secure when two copies are executed concurrently.
Thus, at the current state of affairs, the analysis cannot proceed by applying some composition
theorems to (two-party) protocols satisfying some concurrent-security properties (because suitable
concurrently-secure protocols and composition theorems are currently unknown). Instead, we have
to analyze our protocol directly. We do so by reducing the analysis of (two concurrent executions
of) our protocol to the analysis of non-concurrent executions of related protocols. Specifically, we
show how a successful adversary in the concurrent setting contradicts the security requirements in
the non-concurrent setting. Such “reductions” are performed several times, each time establishing
some property of the original protocol. Typically, the property refers to one of the two concurrent
executions, and it is shown to hold even if the adversary is given some secrets of the legitimate
party in the second execution. This is shown by giving these secrets to the adversary, enabling it to
effectively emulate the second execution internally. Thus, only the first execution remains and the
relevant property is proven (in this standard non-concurrent setting). We stress that this procedure
is not applied “generically”, but is rather applied to the specific protocol we analyze while taking
advantage of its specific structure (where some of this structure was designed so to facilitate our
proof). Thus, our analysis is ad-hoc in nature, but still we believe that it can eventually lead to a
methodology of analyzing concurrent executions of (two-party) protocols.

8In the polynomial evaluation functionality, party A has a polynomial Q(·) over some finite field and Party B has
an element x of the field. The evaluation is such that A learns nothing, and B learns Q(x); i.e., the functionality is
defined by (Q, x) 7→ (λ, Q(x)).

9Specifically, the adversary may execute the protocol with Alice while claiming to be Bob, concurrently to executing
the protocol with Bob while claiming to be Alice, where these two executions refer to the same joint Alice–Bob
password.

8

1.4 Discussion

We view our work as a theoretical study of the very possibility of achieving private and reliable
communication among parties that share only a secret (low-quality) password and communicate
over a channel that is controlled by an active adversary. Our main result is a demonstration of the
feasibility of this task. That is, we demonstrate the feasibility of performing session-key generation
based only on (low-quality) passwords. Doing so, this work is merely the first (rigorous) step in a
research project directed towards providing a good solution to this practical problem. We discuss
two aspects of this project that require further study.

Concurrent executions for the same pair of parties: Our protocol is proven secure only
when the same pair of parties (using the same password) does not conduct several concurrent
executions of the protocol. Thus, actual use of our protocol requires a mechanism for ensuring
that the same pair of parties execute the protocol strictly sequentially. A simple timing mechanism
enforcing the above (and using local clocks only) is as follows. Let ∆ be greater than the period
of time that suffices for completing an execution of the protocol under “ordinary” circumstances.
Then, if an execution takes longer than ∆ units of time, the execution is timed-out (with the
parties aborting). Furthermore, parties wait for at least ∆ units of time between consecutive
protocol executions. It is easy to see that this enforces strict sequentiality of executions. Indeed,
it is desirable not to employ such a timing mechanism, and to prove that security holds also when
many executions are conducted concurrently using the same password. Nevertheless, there are
settings where such a mechanism can be used. See Section 2.5 for further details.

We stress that the above limitation relates only to the same pair parties using the same password.
There is no limitation on the concurrency of executions involving different pairs of parties (or the
same pair of parties and different passwords).

We note that the protocols of [4, 15, 39] do not suffer from this limitation. However, as we have
mentioned, the protocols of [4, 15] are only proven secure in the random oracle model (and thus
the proofs of security are heuristic), and the protocol of [39] assumes additional setup in the form
of a common reference string.

Efficiency: It is indeed desirable to have more efficient protocols than the one presented here.
Some of our techniques may be useful towards this goal.

1.5 Organization

In Section 2 we present the formal setting and state our results. Our protocol for password-based
session-key generation is presented in Section 3. In Section 4 we present proof sketches of the main
claims used in the analysis of our protocol, and derive our main result based on these claims. The
full proofs of these claims are given in Sections 5 to 8. We note that, except in one case, the
proof sketches (presented in Section 4) are rather detailed, and demonstrate our main techniques.
Thus, we believe that a reading of the paper until the end of Section 4 suffices for obtaining a good
understanding of the results presented and the proof techniques involved. The exceptional case,
mentioned above, is the proof of Lemma 4.6, which is given in Section 6.1 and is far more complex
than the corresponding proof sketch. Thus, we also recommend to read Section 6.1.

In Appendix A we recall the definitions of secure two-party computation as well as the various
cryptographic tools used in our protocol.

9

2 Formal Setting

In this section we present notation and definitions that are specific to our setting, culminating in
a definition of Authenticated Session-Key Generation. Given these, we state our main result.

2.1 Basic Notations

• Typically, C denotes the channel (i.e., a probabilistic polynomial-time adversary) through which
parties A and B communicate. We adopt the notation of Bellare and Rogaway [6] and model
the communication by giving C oracle access to A and B. We stress that, as in [6], these oracles
have memory and model parties who participate in a session-key generation protocol. Unlike
in [6], when A and B share a single password, C has oracle access to only a single copy of each
party.
We denote by CA(x),B(y)(σ), an execution of C (with auxiliary input σ) when it communicates
with A and B, holding respective inputs x and y. Channel C’s output from this execution is
denoted by output

(
CA(x),B(y)(σ)

)
.

• The password dictionary is denoted byD ⊆ {0, 1}n, and is fixed throughout the entire discussion.
We assume that this dictionary can be sampled in probabilistic polynomial-time. We denote
ε = 1

|D| .

• We denote by Un a random variable that is uniformly distributed over the set of strings of
length n.

• For a set S, we denote x ∈R S when x is chosen uniformly from S.

• We use “ppt” as shorthand for probabilistic polynomial time.

• An unspecified negligible function is denoted by µ(n). That is, for every polynomial p(·) and
for all sufficiently large n’s, µ(n) < 1

p(n) . For functions f and g (from the integers to the reals),
we denote f ≈ g if |f(n)− g(n)| < µ(n).

• Finally, we denote computational indistinguishability by
c≡.

A security parameter n is often implicit in our notations and discussions. Thus, for example, by
the notation D for the dictionary, our intention is really Dn (where Dn ⊆ {0, 1}n). Recall that we
make no assumptions regarding the size of Dn, and in particular it may be polynomial in n.

Uniform or non-uniform model of computation. Some of the definitions in Appendix A are
presented in the non-uniform model of computation. Furthermore, a number of our proofs appear
to be in the non-uniform complexity model, but can actually be carried out in the uniform model.
Thus, a straightforward reading of our proofs makes our main result hold assuming the existence
of enhanced trapdoor permutations that cannot be inverted by polynomial-size circuits. However,
realizing that the analogous uniform-complexity definitions and proofs hold, it follows that our
main result can be achieved under the analogous uniform assumption.

2.2 (1− ε)-Indistinguishability and Pseudorandomness

Extending the standard definition of computational indistinguishability [34, 56], we define the
concept of (1−ε)-indistinguishability. Loosely speaking, two ensembles are (1−ε)-indistinguishable

10

if for every ppt machine, the probability of distinguishing between them (via a single sample) is at
most negligibly greater than ε.

Definition 2.1 ((1 − ε)-indistinguishability): Let ε : N → [0, 1] be a function, and let {Xn}n∈N

and {Yn}n∈N be probability ensembles, so that for any n the distribution Xn (resp., Yn) ranges over
strings of length polynomial in n. We say that the ensembles are (1− ε)-indistinguishable, denoted
{Xn}n∈N

ε≡ {Yn}n∈N, if for every probabilistic polynomial time distinguisher D, and all auxiliary
information z ∈ {0, 1}poly(n)

|Pr[D(Xn, 1n, z) = 1]− Pr[D(Yn, 1n, z) = 1]| < ε(n) + µ(n)

Definition 2.1 refers to ensembles that are indexed by the natural numbers. In this work, we will
also refer to ensembles that are indexed by a set of strings S. In this case, we require that for every
D and z as above, and for every w ∈ S

|Pr[D(Xw, w, z) = 1]− Pr[D(Yw, w, z) = 1]| < ε(|w|) + µ(|w|)

The standard notion of computational indistinguishability coincides with 1-indistinguishability.
Note that (1 − ε)-indistinguishability is not preserved under multiple samples (even for efficiently
constructible ensembles); however (for efficiently constructible ensembles), (1−ε)-indistinguishability
implies (1−mε)-indistinguishability of sequences of m samples.

Definition 2.2 ((1 − ε)-pseudorandomness): We say that {Xn}n∈N is (1 − ε)-pseudorandom if it
is (1− ε)-indistinguishable from {Un}n∈N.

Similarly, extending the definition of pseudorandom functions [29], we define (1− ε)-pseudorandom
functions as follows.

Definition 2.3 ((1 − ε)-pseudorandom function ensembles): Let F = {Fn}n∈N be a function en-
semble where for every n, the random variable Fn assumes values in the set of functions mapping
n-bit long strings to n-bit long strings. Let H = {Hn}n∈N be the uniform function ensemble in
which Hn is uniformly distributed over the set of all functions mapping n-bit long strings to n-bit
long strings. Then, a function ensemble F = {Fn}n∈N is called (1 − ε)-pseudorandom if for every
probabilistic polynomial-time oracle machine D, and all auxiliary information z ∈ {0, 1}poly(n)

∣∣∣Pr[DFn(1n, z) = 1]− Pr[DHn(1n, z) = 1]
∣∣∣ < ε(n) + µ(n)

2.3 Authenticated Session-Key Generation: Definition and Discussion

The main definition is presented in Subsection 2.3.2 and augmented in Subsection 2.3.4. In Sub-
section 2.3.3 we show that the main definition implies all natural security concerns discussed in
the literature (with one notable exception that is addressed by the augmented definition). Fi-
nally, in Subsection 2.3.5 we relate our definitions to the framework of general secure multi-party
computation.

11

2.3.1 Motivation for the definition

Our definition for password-based authenticated session-key generation is based on the “simulation
paradigm” (cf. [34, 35, 2, 45, 16]). This paradigm has been used before in the context of session-key
generation in the high-entropy case (e.g., [3, 53]), and also in the context of password-based authen-
tication [15] (the difference between our definition and that of [15] is described in Section 2.3.3).
According to this paradigm, we require a secure protocol that is run in the real model to emulate
an ideal execution of a session-key generation functionality (where emulation usually means that
the output distributions in both cases are computationally indistinguishable). In such an ideal
execution, communication is via a trusted party who receives the parties inputs and (honestly) re-
turns to each party its output, as designated by the functionality. Thus, defining the ideal model is
essentially the same as defining the desired functionality of the problem at hand. We now described
this functionality.

The problem of password-based authenticated session-key generation can be cast as a three-
party functionality involving honest parties A and B, and an adversary C.10 Parties A and B
should input their joint password and receive identical, uniformly distributed session-keys. On the
other hand, the adversary C should have no output (and specifically should not obtain information
on the password or output session-key). Furthermore, C should have no power to maliciously
influence the outcome of the protocol (and thus, for example, cannot affect the choice of the key or
cause the parties to receive different keys). However, recall that in a real execution, C controls the
communication line between the (honest) parties. Thus, it can block all communication between
A and B, and cause any protocol to fail. This (unavoidable) adversarial capability is modeled
in the (modified) functionality by letting C input a single bit b indicating whether or not the
execution is to be successful. Specifically, if b = 1 (i.e., success) then both A and B receive the
above-described session-key. On the other hand, if b = 0 then A receives a session-key, whereas B
receives a special abort symbol ⊥ instead.11 We stress that C is given no ability to influence the
outcome beyond determining this single bit (i.e., b). In conclusion, the problem of password-based
session-key generation is cast as the following three-party functionality:

(wA, wB, b) 7→
{

(Un, Un, λ) if b = 1 and wA = wB,
(Un,⊥, λ) otherwise.

where wA and wB are A and B’s respective passwords. This functionality forms the basis for our
definition of security.

An important observation in the context of password-based security is that, in a real execution,
an adversary can always attempt impersonation by simply guessing the secret password and par-
ticipating in the protocol, claiming to be one of the parties. If the adversary’s guess is correct, then
impersonation always succeeds (and, for example, the adversary knows the generated session-key).
Furthermore, by executing the protocol with one of the parties, the adversary can verify whether or
not its guess is correct, and thus can learn information about the password (e.g., it can rule out an
incorrect guess from the list of possible passwords). Since the dictionary may be small, this informa-
tion learned by the adversary in a protocol execution may not be negligible at all. Thus, we cannot

10We stress that unlike in most works regarding secure multi-party computation, the scenario includes three parties,
but a protocol is constructed for only two of them. Furthermore, the identity of the adversary (among the three) is
fixed beforehand. What makes the problem non-trivial is the fact that the honest parties communicate only via a
communication line controlled by the adversary.

11This lack of symmetry in the definition is inherent as it is not possible to guarantee that A and B both terminate
with the same “success/failure bit”. For sake of simplicity, we (arbitrarily) choose to have A always receive a uniformly
distributed session key and to have B always output ⊥ when b = 0.

12

hope to obtain a protocol that emulates an ideal-model execution (in which C learns nothing) up
to computational indistinguishability. Rather, the inherent limitation of password-based security
is accounted for by (only) requiring that a real execution can be simulated in the ideal model such
that the output distributions (in the ideal and real models) are (1−O(ε))-indistinguishable (rather
than 1-indistinguishable), where (as defined above) ε = 1/|D|.12

We note that the above limitation applies only to active adversaries who control the communi-
cation channel. Therefore, in the case of a passive (eavesdropping) adversary, we demand that the
ideal and real model distributions be computationally indistinguishable (and not just (1− O(ε))-
indistinguishable).

2.3.2 The actual definition

Following the simulation paradigm, we now define the ideal and real models (mentioned above),
and present the actual definition of security.

The ideal model: Let Â and B̂ be honest parties and let Ĉ be any ppt ideal-model adversary
(with arbitrary auxiliary input σ). An ideal-model execution proceeds in the following phases:

Initialization: A password w ∈R D is uniformly chosen from the dictionary and given to both Â and
B̂.

Sending inputs to trusted party: Â and B̂ both send the trusted party the password they have re-
ceived in the initialization stage. The adversary Ĉ sends either 1 (denoting a successful
protocol execution) or 0 (denoting a failed protocol execution).

The trusted party answers all parties: In the case Ĉ sends 1, the trusted party chooses a uniformly
distributed string k ∈R {0, 1}n and sends k to both Â and B̂. In the case Ĉ sends 0, the
trusted party sends k ∈R {0, 1}n to Â and ⊥ to B̂. In both cases, Ĉ receives no output.13

The ideal distribution is defined as follows:

idealĈ(D, σ) def= (w, output(Â), output(B̂), output(Ĉ(σ)))

where w ∈R D is the input given to Â and B̂ in the initialization phase. Thus,

idealĈ(D, σ) =

{
(w, Un, Un, output(Ĉ(σ))) if send(Ĉ(σ)) = 1,
(w, Un,⊥, output(Ĉ(σ))) otherwise.

where send(Ĉ(σ)) denotes the value sent by Ĉ (to the trusted party), on auxiliary input σ.
12Another way of dealing with this limitation of password-based security is to allow the ideal-model adversary a

constant number of password guesses to the trusted party (such that if the adversary correctly guesses the password
then it obtains full control over the honest parties’ outputs; otherwise it learns nothing other than the fact that its
guess was wrong). (We stress that this ideal-model adversary is stronger than the one considered in our formulation,
which restricts the ideal-model adversary to obliviously decide whether to enable the execution or abort it.) Security
is guaranteed by requiring that a real protocol execution can be simulated in this ideal model so that the output in
the ideal model is computationally indistinguishable from that in a real execution. This is the approach taken by [15];
however we do not know how whether or not our protocol satisfied such a definition. See Section 2.3.3 for more
discussion.

13 Since Â and B̂ are always honest, we need not deal with the case that they hand the trusted party different
passwords. In fact, we can modify the definition so that there is no initialization stage or password received by the
honest parties. The “send inputs” stage then involves Ĉ only, who sends a single success/fail bit to the trusted party.
This definition is equivalent because the session key chosen by the trusted party is independent of the password and
the honest parties always send the same password anyway.

13

The real model: Let A and B be honest parties and let C be any ppt real-model adversary
with arbitrary auxiliary input σ. As in the ideal model, the real model begins with an initialization
stage in which both A and B receive an identical, uniformly distributed password w ∈R D. Then,
the protocol is executed with A and B communicating via C.14 The execution of this protocol is
denoted CA(w),B(w)(σ), where C’s view is augmented with the accept/reject decision bits of A and B
(this decision bit denotes whether a party’s private output is a session-key or⊥). This augmentation
is necessary, since in practice the decisions of both parties can be implicitly understood from their
subsequent actions (e.g., whether or not the parties continue the communication after the session-
key generation protocol has terminated). We note that in our specific formulation, A always accepts
and thus it is only necessary to provide C with the decision-bit output by B. With some abuse of
notation,15 the real distribution is defined as follows:

realC(D, σ) def= (w, output(A), output(B), output(CA(w),B(w)(σ)))

where w ∈R D is the input given to A and B in the initialization phase, and output(CA(w),B(w)(σ))
includes an indication of whether or not output(B) = ⊥.

The definition of security: Loosely speaking, the definition requires that a secure protocol (in
the real model) emulates the ideal model (in which a trusted party participates). This is formulated
by saying that adversaries in the ideal model are able to simulate the execution of a real protocol,
so that the input/output distribution of the simulation is (1 − O(ε))-indistinguishable from in a
real execution. We further require that passive adversaries can be simulated in the ideal-model
so that the output distributions are computationally indistinguishable (and not just (1 − O(ε))-
indistinguishable).16

Definition 2.4 (password-based authenticated session-key generation): A protocol for password-
based authenticated session-key generation is secure if the following two requirements hold:

1. Passive adversaries: For every ppt real-model passive adversary C there exists a ppt ideal-
model adversary Ĉ that always sends 1 to the trusted party such that

{
idealĈ(D, σ)

}
n,D,σ

c≡ {realC(D, σ)}n,D,σ

where D ⊆ {0, 1}n is any ppt samplable dictionary and σ ∈ {0, 1}poly(n) is the auxiliary input
for the adversary.

2. Arbitrary (active) adversaries: For every ppt real-model adversary C there exists a ppt ideal-
model adversary Ĉ such that

{
idealĈ(D, σ)

}
n,D,σ

O(ε)≡ {realC(D, σ)}n,D,σ

14We stress that there is a fundamental difference between the real model as defined here and as defined in standard
multi-party computation. Here, the parties A and B do not have the capability of communicating directly with each
other. Rather, A can only communicate with C and likewise for B. This is in contrast to standard multi-party
computation where all parties have direct communication links or where a broadcast channel is used.

15Here and in the sequel, output(A) (resp., output(B)) denotes the output of A (resp., B) in the execution
CA(w),B(w)(σ), whereas output(CA(w),B(w)(σ)) denotes C’s output in this execution.

16A passive adversary is one that does not modify, omit or insert any messages sent between A or B. That is, it
can only eavesdrop and thus is limited to analyzing the transcript of a protocol execution between two honest parties.
Passive adversaries are also referred to as semi-honest in the literature (e.g., in [33]).

14

where D ⊆ {0, 1}n is any ppt samplable dictionary, σ ∈ {0, 1}poly(n) is the auxiliary input for
the adversary, and ε

def= 1
|D| . We stress that the constant in O(ε) is a universal one.

We note that the ideal-model as defined here reflects exactly what one would expect from a session-
key generation protocol for which the honest parties hold joint high-entropy cryptographic keys
(as in [6]). The fact that in the real execution the honest parties only hold low-entropy passwords
is reflected in the relaxed notion of simulation that requires only (1 − O(ε))-indistinguishability
(rather than computational indistinguishability) between the real and ideal models.

2.3.3 Properties of Definition 2.4

Definition 2.4 asserts that the joint input–output distribution from a real execution is at most
“O(ε)-far” from an ideal execution in which the adversary learns nothing (and has no influence on
the output except from the possibility of causing B to reject). This immediately implies that the
output session-key is (1−O(ε))-pseudorandom (which, as we have mentioned, is the best possible
for password-based key generation). Thus, if such a session-key K is used for encryption then for
any (partial information) predicate P and any distribution on the plaintext m, the probability that
an adversary learns P (m) given the ciphertext EK(m) is at most O(ε) + µ(n) greater than the
a-priori probability (when the adversary is not given the ciphertext). Likewise, if the key K is used
for a message authentication code (MAC), then the probability that an adversary can generate a
correct MAC-tag on a message not sent by A or B is at most negligibly greater than O(ε). We
stress that the security of the output session-key does not deteriorate with its usage; that is, it can
be used for polynomially-many encryptions or MACs and the advantage of the adversary remains
O(ε) + µ(n). Another important property of Definition 2.4 is that, except with probability O(ε),
(either one party detects failure or) both parties terminate with the same session-key.

Definition 2.4 also implies that the password used remains (1−O(ε))-indistinguishable from a
randomly chosen (new) password w̃ ∈R D: This can be seen from the fact that in the ideal model,
the adversary learns nothing of the password w, which is part of the ideal distribution. This
implies, in particular, that a secure protocol is resistant to off-line dictionary attacks (whereby
an adversary scans the dictionary in search of a password that is “consistent” with its view of a
protocol execution).

Other desirable properties of session-key protocols are also guaranteed by Definition 2.4. Specif-
ically, we mention forward secrecy and security in the face of loss of session keys (also known as
known-key attacks). Forward secrecy states that the session-key remains secure even if the password
is revealed after the protocol execution [22]. Analogously, security in the face of loss of session-keys
means that the password and the current session-key maintain their security even if prior session-
keys are revealed [6]. These properties are immediately implied by the fact that, in the ideal-model,
there is no dependence between the session-key and the password and between session-keys from
different sessions. Thus, learning the password does not compromise the security of the session-key
and vice versa.17

An additional property that is desirable is that of intrusion detection. That is, if the adversary
modifies any message sent in a session, then with probability at least (1 − O(ε)) this is detected
and at least one party rejects. This property is not guaranteed by Definition 2.4 itself. However,

17The independence of session-keys from different sessions relates to the multi-session case, which is discussed in
Section 2.5. For now, it is enough to note that the protocol behaves as expected in that after t executions of the
real protocol, the password along with the outputs from all t sessions are (1 − O(tε))-indistinguishable from t ideal
executions. The fact that security is maintained in the face of session-key loss is explicitly shown in Section 2.5.

15

it does hold for our protocol (as shown in Proposition 4.13, see Section 4.6). Combining this with
Part 1 of Definition 2.4 (i.e., the requirement regarding passive adversaries), we conclude that in
order for C to take advantage of its ability to learn “O(ε)-information”, C must take the chance of
being detected with probability 1−O(ε).

Finally, we observe that the above definition also enables mutual authentication. This is because
A’s output session-key is always (1− O(ε))-pseudorandom to the adversary. As this key is secret,
it can be used for explicit authentication via a (mutual) challenge–response protocol.18 By adding
such a step to any secure session-key protocol, we obtain explicit mutual authentication.

Comparison to other definitions. The focus of this work is not with respect to finding the
“right” definition for password-based session-key generation. Rather, the main question that we
consider is the feasibility of solving this problem under some reasonable definition. We believe
that at the very least our definition is reasonable, and in particular it implies the natural security
concerns discussed in prior work. Furthermore, our definition is in agreement with the traditions of
the general area (cf. [34, 35, 2, 45, 16]) as well as of the study of this specific problem (cf. [6, 3, 53]
and more closely in [4]). However, as mentioned in Footnote 12, there is one specific alternative
formulation, aimed at addressing the same security concerns (cf. [15]), which we wish to further
discuss below.

Recall that the inherent limitation of password-based security (which in turn arises from the
straightforward password-guessing attack) is dealt with in our formulation by requiring that the
real and ideal executions be only (1−O(ε))-indistinguishable (rather than 1-indistinguishable). An
alternative way of dealing with this limitation (of password-based security) is to explicitly allow
the ideal-model adversary a constant number of password guesses to the trusted party (such that
if the adversary correctly guesses the password then it obtains full control over the honest parties’
outputs; otherwise it learns nothing other than the fact that its guess was wrong). Security is then
guaranteed by requiring that the real and ideal executions are computationally indistinguishable.19

This definition is somewhat more elegant than ours, and is the one considered by [15].
The latter formulation implies ours, but it is not clear whether the converse holds. Still, it seems

that the actual consequences (i.e., in the sense discussed above) of both definitions are the same.
That is, in both cases the difference between using the protocol-generated session-key and a fully
random key is at most O(ε). For example, consider the case that the parties use the session-key
for authenticating messages with a MAC. Both under our definition and under the definition of
[15], no polynomial-time adversary will be able to forge any MAC-tag (i.e., in a way that fools the
parties), except than with probability O(ε), during the entire session in which the key is used. On
the other hand, under both definitions, an adversary can always succeed in forging a MAC with
probability ε (e.g., by just carrying out a straightforward password-guessing attack).

2.3.4 Augmenting the definition

Although Definition 2.4 seems to capture all that is desired from authenticated session-key gener-
ation, there is a subtlety that it fails to address (as pointed out by Rackoff in a personal commu-

18It is easy to show that such a key can be used directly to obtain a (1−O(ε))-pseudorandom function, which can
then be used in a standard challenge–response protocol.

19We stress that the ideal-model in the alternative formulation is stronger than the ideal-model considered by
our formulation (which makes the alternative formulation of security potentially weaker), but the level of indistin-
guishability required by the alternative formulation is stronger (which makes the alternative formulation of security
potentially stronger). However, the latter aspect dominates because the ideal-model of the alternative formulation
can be emulated in a (1−O(ε))-indistinguishable manner by the ideal-model of our formulation.

16

nication to the authors of [6]). The issue is that the two parties do not necessarily terminate the
session-key generation protocol simultaneously, and so one party may terminate the protocol and
start using the session-key while the other party is still executing instructions of the session-key
generation protocol (i.e., determining its last message). This situation is problematic because the
use of a session-key inevitably leaks information. Thus, the adversary may be able to use this
information in order to attack the protocol execution that is still in progress from the point of view
of the other party.

This issue is highlighted by the following attack devised by Rackoff. Consider any protocol that
is secure by Definition 2.4 and assume that in this protocol A concludes first. Now, modify B so
that if the last message received by B equals fk(0), where k is the output session key and {fs}s is a
pseudorandom function ensemble, then B publicly outputs the password w. The modified protocol
is still secure by Definition 2.4, because in the original protocol, the value fk(0) is pseudorandom
with respect to the adversary’s view (otherwise this would amount to the adversary being able
to distinguish the session-key from a random key). However, consider a scenario in which upon
completing the session-key generation protocol, A sends a message that contains the value fk(0)
(such use of the session-key is not only legitimate, but also quite reasonable). In this case, the
adversary can easily obtain the password by passing fk(0) (as sent by A) to B, who has not
yet completed the session-key protocol. In summary, Definition 2.4 should be modified in order
to ensure that any use of the session-key after one of the parties has completed the session-key
protocol cannot help the adversary in its attack on this protocol.

In order to address this issue, Definition 2.4 is augmented so that the adversary receives a
session-key challenge after the first party concludes its execution of the session-key protocol. The
session-key challenge is chosen so that with probability 1/2 it equals the actual session-key (as
output by the party that has finished) and with probability 1/2 it is a uniformly distributed string.
The augmentation requires that the adversary be unable to distinguish between these challenge
cases. Intuitively, this solves the above-described problem because the adversary can use the
session-key challenge it receives in order to simulate any messages that may be sent by A following
the session-key protocol execution.

The augmented ideal model. Let Â, B̂, Ĉ and σ be as in the above definition of the ideal
model. Then, the augmented ideal model proceeds in the following phases:

Initialization: Â and B̂ receive w ∈R D.

Honest parties send inputs to the trusted party: Â and B̂ both send w.

Trusted party answers Â: The trusted party chooses k ∈R {0, 1}n and sends it to Â.

Trusted party chooses session-key challenge for Ĉ: The trusted party chooses β ∈R {0, 1} and gives
Ĉ the string kβ, where k1

def= k and k0 ∈R {0, 1}n.

Adversary Ĉ sends input to the trusted party: Ĉ sends either 1 (denoting a successful protocol exe-
cution) or 0 (denoting a failed protocol execution).

Trusted party answers B̂: If Ĉ sent 1 in the previous phase, then the trusted party gives the key k
to B̂. Otherwise, it gives B̂ an abort symbol ⊥.

The augmented ideal distribution is defined by:

ideal-augĈ(D, σ) def= (w, output(Â), output(B̂), output(Ĉ(σ, kβ)), β)

17

where w ∈R D. (Notice the inclusion of β in the ideal-aug distribution.) We remark that in an
ideal execution, Â always concludes first and always accepts.

The augmented real model. The real model execution is the same as above except for the
following modification. Recall that the scheduling of a protocol execution is controlled by C.
Therefore, C controls which party (A or B) concludes first. If the first party concluding outputs
an abort symbol ⊥, then the adversary is simply given ⊥. (Since the accept/reject bit is anyway
public, this is meaningless.) On the other hand, if the first party to terminate the execution locally
outputs a session-key, then a bit β ∈R {0, 1} is chosen, and C is given a corresponding challenge:
If β = 0, then C is given a uniformly distributed string r ∈R {0, 1}n, else (i.e., β = 1) C is given
the session-key as output by the terminating party. The augmented real distribution is defined as
follows:

real-augC(D, σ) def= (w, output(A), output(B), output(CA(w),B(w)(σ)), β)

where CA(w),B(w)(σ) denotes the above described (augmented) execution.

Finally, the definition of security is analogous to Definition 2.4:

Definition 2.5 (augmented password-based authenticated session-key generation): We say that a
protocol for augmented password-based authenticated session-key generation is secure if the following
two requirements hold:

1. Passive adversaries: For every ppt real-model passive adversary C there exists a ppt ideal-
model adversary Ĉ that always sends 1 to the trusted party such that

{
ideal-augĈ(D, σ)

}
n,D,σ

c≡ {real-augC(D, σ)}n,D,σ

where D ⊆ {0, 1}n is any ppt samplable dictionary and σ ∈ {0, 1}poly(n) is the auxiliary input
for the adversary.

2. Arbitrary adversaries: For every ppt real-model adversary C there exists a ppt ideal-model
adversary Ĉ such that

{
ideal-augĈ(n,D, σ)

}
n,D,σ

O(ε)≡ {real-augC(n,D, σ)}n,D,σ

where D ⊆ {0, 1}n is any ppt samplable dictionary, σ ∈ {0, 1}poly(n) is the auxiliary input for
the adversary, and ε

def= 1
|D| .

We first explain how this augmentation addresses the problem discussed above (i.e., prevents the
attack of Rackoff). In the augmented ideal model, Ĉ learns nothing about the value of β. Therefore,
by Definition 2.5, it follows that in the augmented real model, C can distinguish the case that β = 0
from the case that β = 1 with probability at most O(ε). Now, consider the case that the session-key
challenge given to C is a uniformly distributed string (i.e., β = 0). Then, since C can generate
the challenge itself, it clearly cannot help C in any way in its attack on the protocol. On the
other hand, we are interested in analyzing the probability that the session-key itself can help C
in its attack on the protocol. The point is that if C could utilize knowledge of this key, then this
additional knowledge could be used to distinguish the case that β = 0 from the case that β = 1.
We conclude that the information that C can obtain about the session-key in a real setting does
not help it in attacking the session-key generation protocol (except with probability O(ε)).

18

As we have seen the above augmentation resolves the problem outlined by Rackoff. However,
in contrast to Definition 2.4, it is not clear that Definition 2.5 implies all the desired properties of
secure session-key generation protocols.20 We therefore show that all the properties of Definition 2.4
are indeed preserved in Definition 2.5. In fact:

Proposition 2.6 Any protocol that is secure by Definition 2.5 is secure by Definition 2.4.

Proof: Intuitively, the proposition holds because in the case that β = 0, the adversary in the
augmented model has no additional advantage over the adversary for the basic model, where we
refer to the model of Def. 2.4 as the basic or unaugmented model. (Recall that when β = 0, the
adversary merely receives a uniformly distributed string.) Therefore, any success by an adversary
for the basic model can be translated into an adversarial success in the augmented model, provided
that β = 0 (in the augmented model). Since β = 0 with probability 1/2, a protocol proven secure
for the augmented model must also be secure in the basic model. Details follow.

Assume that there exists a protocol that is secure by Definition 2.5 (the rest of this proof refers
implicitly to this protocol). First, notice that for any real-model adversary C (as in Definition 2.4),
there exists an augmented real-model adversary C ′ such that

{realC(D, σ)} ≡ {real-augC′(D, σ) | β = 0} (1)

In order to see this, consider an adversary C ′ who simply invokes the basic-model adversary
C in the augmented model and ignores the additional session-key challenge provided, which in
the case that β = 0 provides no information anyway. (In fact, it holds that {realC(D, σ)} ≡
{real-augC′(D, σ)}, but for this proof we only need to consider the conditional space where
β = 0).

Next, by Definition 2.5, we have that for any augmented real-model adversary C ′, there exists
an augmented ideal-model adversary Ĉ ′ such that

{real-augC′(D, σ)}n,D,σ

κ·ε≡ {
ideal-augĈ′(D, σ)

}
n,D,σ

(2)

where κ is a constant. This implies that

{real-augC′(D, σ) | β = 0} 2κ·ε≡ {
ideal-augĈ′(D, σ) | β = 0

}
(3)

Eq. (3) holds because β = 0 with probability 1/2, and thus any distinguishing gap greater than
2κ · ε can be translated into a distinguishing gap of greater than κ · ε for the distributions in Eq. (2).

Finally, we claim that for any augmented ideal-model adversary Ĉ ′, their exists an ideal-model
adversary Ĉ ′′ (as in Definition 2.4) such that

{
ideal-augĈ′(D, σ) | β = 0

} ≡ {
idealĈ′′(D, σ)

}
(4)

Eq. (4) holds because when β = 0, adversary Ĉ ′ receives a uniformly distributed string in the ideal
execution. Thus, Ĉ ′′ can invoke Ĉ ′ (while in the basic, unaugmented model) and pass it a uniformly
distributed string for its session-key challenge.

Combining Equations (1), (3) and (4) we obtain the proposition.

20Clearly, if C were always given the session key, then the definition guarantees no security with respect to the
session-key. So, we must show that in Definition 2.5, where C is given the key with probability 1/2, security (as per
Definition 2.4) is maintained.

19

2.3.5 Session-key generation as secure multiparty computation

We have cast the problem of password-based session-key generation in the framework of secure
multiparty computation. However, there are a number of essential differences between our model
here and the standard model of multiparty computation.
• Real-model communication: In the standard model, all parties can communicate directly with

each other. However, in our context, the honest parties A and B may only communicate with
the adversary C. This difference models the fact that A and B communicate over an “open”
communication channel that is vulnerable to active man-in-the-middle attacks.

• Adversarial parties: In the standard model, any party may be corrupted by the adversary.
However, here we assume that A and B are always honest and that only C can be adversarial.

• Quantification over the inputs: In the standard model, security is guaranteed for all inputs.
In particular, this means that an adversary cannot succeed in affecting the output distribution
even if it knows the honest parties’ inputs. This is in contrast to our setting where the honest
parties’ joint password must be kept secret from the adversary. Thus, we quantify over all
ppt samplable dictionaries and all auxiliary inputs to the adversary, rather than over specific
inputs (to the honest parties). Another way of viewing the difference is that, considering the
inputs of the honest parties, we quantify over efficiently samplable input distributions (of certain
min-entropy), whereas in the standard model the quantification is over input values.

• The “level” of indistinguishability: Finally, in the standard model, the real and ideal output
distributions are required to be computationally indistinguishable (and thus “essentially” the
same). On the other hand, due to the inherent limitation resulting from the use of low-entropy
passwords, we only require that these distributions be (1−O(ε))-indistinguishable.

2.4 Our Main Result

Given Definition 2.5, we can now formally state our main result.

Theorem 2.7 Assuming the existence of 1–1 one-way functions and collections of enhanced trap-
door one-way permutations, there exist secure protocols for (augmented) password-based authenti-
cated session-key generation.

Other distributions over D: For simplicity, we have assumed above that the parties share a
uniformly chosen password w ∈R D. However, our proofs extend to any ppt samplable distribution
(over any dictionary) so that no element occurs (in this distribution) with probability greater than ε.

2.5 Multi-Session Security

The definition above relates to two parties executing a session-key generation protocol once. Clearly,
we are interested in the more general case where many different parties run the protocol any number
of times. It turns out that any protocol that is secure for a single invocation between two parties
(i.e., as in Definitions 2.4 and 2.5), is secure in the multi-party and sequential invocation case.

2.5.1 Sequential executions for one pair of parties

Let A and B be parties who invoke t sequential executions of a session-key generation protocol.
Given that an adversary may gain a password guess per each invocation, the “security loss” for t in-
vocations should be O(tε). That is, we consider ideal and real distributions consisting of the outputs

20

from all t executions. Then, we require that these distributions be (1 − O(tε))-indistinguishable.
Below, we prove that any secure protocol for password-based authenticated session-key generation
maintains O(tε) security after t sequential invocations.

Sequential vs concurrent executions for two parties: Our solution is proven secure only if
A and B do not invoke concurrent executions of the session-key generation protocol with the same
password. Here and below, we treat a pair of parties that share several independently distributed
passwords as different pairs of parties. We stress that security is not guaranteed in a scenario where
the adversary invokes B twice or more (using the same password) during a single execution with A
(or vice versa). Therefore, in order to actually use our protocol, some mechanism must be used to
ensure that such concurrent executions do not take place. This can be achieved by having A and
B wait ∆ units of time between protocol executions, where ∆ is greater than the time taken to run
a single execution. We note that when parties do not come “under attack”, this delay of ∆ will
usually not affect them (since they will usually not execute two successful session-key generation
protocols immediately one after the other).

We remark that this limitation on concurrent executions does not prevent the parties from
opening a number of different (independently-keyed) communication lines. They may do this by
running the session-key protocol sequentially, once for each desired communication line. However,
in this case, they incur a delay of ∆ units of time between each execution. Alternatively, they
may run the protocol once and obtain a (1 − O(ε))-pseudorandom session-key. By applying a
pseudorandom generator to this key, any polynomial number of computationally independent (1−
O(ε))-pseudorandom session-keys can be derived. This latter solution also has the advantage that
(1−O(ε))-pseudorandomness is maintained for any polynomial number of session keys, in contrast
with an O(ε) degradation for each key in the former approach (thereby limiting the number of keys
to at most O(1/ε)).

Proof of security for sequential executions: We prove the sequential composition of secure
password-based session-key protocols for the basic definition (Definition 2.4). The proof for the
augmented definition (Definition 2.5) is almost identical. We begin with the following notation. Let
RC(w, σ) def= (output(A), output(B), output(CA(w),B(w)(σ))). That is, RC(w, σ) equals the outputs
of A, B and C from a real execution where the joint password equals w and C’s auxiliary input is
σ (and thus realC(D, σ) = (w,RC(w, σ)) for w ∈R D). Next, we present the equivalent notation
IĈ(σ) for the ideal-model as follows:

IĈ(σ) =

{
(Un, Un, output(Ĉ(σ))) if send(Ĉ(σ)) = 1,

(Un,⊥, output(Ĉ(σ))) otherwise.

Thus, idealĈ(D, σ) = (w, IĈ(σ)) for w ∈R D. (Recall that send(Ĉ(σ)) denotes the input-bit sent
by Ĉ to the trusted party upon auxiliary input σ, and output(Ĉ(σ)) denotes its final output.)
We stress that IĈ(σ) is independent of the specific dictionary D and the password w (and for this
reason D does not appear in the notation). This is equivalent to the definition of idealĈ(D, σ) in
Section 2.3.2 because the password plays no role in the choice of the session-key or in Ĉ’s decision
to send 0 or 1 to the trusted party. Furthermore, as mentioned in Footnote 13, since Â and B̂ are
always honest, there is no need to have them receive any password for input or send any message
whatsoever to the trusted party.

We now define the distribution realt
C(D, σ0), representing t sequential executions, as follows:

realt
C(D, σ0)

def= (w, σ1 = RC(w, σ0), σ2 = RC(w, σ1), · · · , σt = RC(w, σt−1))

21

where σ0 is some arbitrary auxiliary input to C and w ∈R D. (We assume, without loss of
generality, that the multi-session adversary C outputs its state information at the end of each
session. Furthermore, at the beginning of each session, it reads in its auxiliary input and resets
its state according to its contents.21 Any multi-session adversary can be transformed into many
invocations of a single-session adversary in this way. We therefore obtain that a multi-session
adversary is just a single-session adversary that is invoked many time sequentially.) Likewise, the
distribution idealt

Ĉ
(D, σ0) is defined by:

idealt
Ĉ
(D, σ0)

def= (w, σ1 = IĈ(σ0), σ2 = IĈ(σ1), · · · , σt = IĈ(σt−1))

where σ0 is some arbitrary auxiliary input to C and w ∈R D. (For the sake of brevity, we will some-
times omit the explicit assignments σi = IĈ(σi−1) and will just write (w, IĈ(σ0), IĈ(σ1), . . . , IĈ(σt1)).)

Notice that in the i’th session, C receives all the parties’ outputs from the previous session
(i.e., including previous session-keys), rather than just its own output (or state information) as one
may expect. This models the fact that information about previous session-keys may be leaked from
protocols who use them. Therefore, we require that the security of future session keys holds, even
if previous session-keys are revealed to the adversary.

By the above notation, real1
C(D, σ0) = realC(D, σ0) and ideal1

Ĉ
= idealĈ(D, σ0) and thus

by the definition it holds that real1
C(D, σ0) and ideal1

Ĉ
(D, σ0) are (1 − O(ε))-indistinguishable.

We now show that for any polynomial function of the security parameter t = t(n), the distributions
idealt

Ĉ
(D, σ0) and realt

C(D, σ0) are (1−O(tε))-indistinguishable.

Proposition 2.8 Consider a secure protocol for password-based authenticated session-key genera-
tion. Then, for every ppt real-model adversary C there exists a ppt ideal-model adversary Ĉ such
that for every polynomial function t = t(n)

{
idealt

Ĉ
(D, σ0)

}
n,D,σ0

O(tε)≡
{
realt

C(D, σ0)
}

n,D,σ0

Proof: We prove the proposition by induction.22 Let C be a real-model adversary, and let Ĉ be
the ideal-model adversary that is guaranteed to exist by the security of the protocol. (Recall that
by our above assumption, C is just a stand-alone adversary who is invoked many times sequentially.
Therefore, the stand-alone definition of security implies the existence of Ĉ.) More explicitly, we
have that there exists a constant c and a negligible function µ(·) such that for every probabilistic
polynomial-time distinguisher D and all auxiliary inputs σ ∈ {0, 1}poly(n)

∣∣Pr
[
D(idealĈ(D, σ)) = 1

]− Pr [D(realC(D, σ)) = 1]
∣∣ < c · ε + µ(n)

Recall that the above holds for all auxiliary inputs σ.
We are now ready to proceed with the induction. The base case is given by the assumption

that the protocol is secure as in Definition 2.4. That is, for C and Ĉ as above, we have that
∣∣Pr

[
D(idealĈ(D, σ)) = 1

]− Pr [D(realC(D, σ)) = 1]
∣∣ < c · ε + µ(n)

21We stress that the running-time of all ppt adversaries is a fixed polynomial in n, and is not a function of the
length of its auxiliary input. Thus, C runs the same polynomial number of steps in each execution and cannot run
longer due to it receiving longer and longer auxiliary inputs from previous sessions.

22We note that proving this kind of claim by induction can be problematic due to the fact that we must guarantee
that the resulting ideal adversary runs in polynomial-time and that the indistinguishability gap stays O(tε) as required.
We deal with these issues explicitly in the proof below.

22

We stress that the constant c and negligible function µ(·) are as specified above. From here on in
the proof, c and µ(·) refer to the specific constant and function used here. The inductive hypothesis
then states that

∣∣∣Pr
[
D(realt

C(D, σ0)) = 1
]
− Pr

[
D(idealt

Ĉ
(D, σ0)) = 1

]∣∣∣ < t · c · ε + t · µ(n)

Now, by the definition of realt+1
C (D, σ0) and RC(w, σ) we have that for every C

{
realt+1

C (D, σ0)
}
≡

{
(realt

C(D, σ0), RC(w, σt))
}

where w and σt are the first and last items in realt
C(D, σ0), respectively. Next notice that there

exists a ppt machine that takes as input dist ∈ {realt
C(D, σ0), idealt

Ĉ
(D, σ0)} and generates

(dist, RC(w, σt)), where w and σt are the first and last items in dist, respectively. This machine
works by (perfectly) emulating a real execution of CA(w),B(w)(σt) and then defining RC(w, σt) to
be the parties’ outputs from this emulation. Thus, appending RC(w, σt) to the ideal and real
distributions does not change the probability of distinguishing between them. That is, any dis-
tinguisher that distinguishes {(realt

C(D, σ0), RC(w, σt))} from {(idealt
Ĉ
(D, σ0), RC(w, σt))} with

probability δ can be used to distinguish {realt
C(D, σ0)} from {idealt

Ĉ
(D, σ0)} with exactly the

same probability δ. By the inductive hypothesis it then follows that
∣∣∣Pr

[
D(realt

C(D, σ0), RC(w, σt)) = 1
]
− Pr

[
D(idealt

Ĉ
(D, σ0), RC(w, σt)) = 1

]∣∣∣ < t · c · ε + t · µ(n)
(5)

Now, a crucial point to notice here is that in the distribution (idealt
Ĉ
(D, σ0), RC(w, σt)), the value

σt is generated by idealt
Ĉ
(D, σ0) and is thus independent of the password w. It therefore holds

that
∣∣∣Pr

[
D(idealt

Ĉ
(D, σ0), RC(w, σt)) = 1

]
− Pr

[
D(idealt

Ĉ
(D, σ0), IĈ(σt)) = 1

]∣∣∣ < c · ε + µ(n) (6)

In order to see this, notice that σt = idealt
Ĉ
(D, σ0) can be generated via some internal preprocessing

that is independent of w. We can therefore apply the stand-alone security of the protocol for C
that holds for all auxiliary input, and in particular, for auxiliary input that is generated according
to the distribution {idealt

Ĉ
(D, σ0)}.

Noting that {(idealt
Ĉ
(D, σ0), IĈ(σt))} ≡ {idealt+1

Ĉ
(D, σ0)} and {(realt

C(D, σ0), RC(w, σt))} ≡
{realt+1

C (D, σ0)} we have that
∣∣∣Pr

[
D(realt+1

C (D, σ0)) = 1
]
− Pr

[
D(idealt+1

Ĉ
(D, σ0)) = 1

]∣∣∣ < (t + 1) · c · ε + (t + 1) · µ(n)

where this is obtained by combining Equations (5) and (6). This completes the proof of the inductive
step. We note that throughout the proof we have explicitly shown the constants and indistinguisha-
bility gap. This is in order to stress the fact that the probability of distinguishing grows linearly
in each step of the induction, and so the final indistinguishability obtained is (1−O((t + 1)ε)), as
required. The fact that the simulation of a multi-session execution runs in polynomial-time follows
immediately from the fact that it just involves t invocations of the polynomial-time ideal adversary
Ĉ, and the fact that in each invocation Ĉ’s running-time is a polynomial in n (and does not depend
on the length of its received auxiliary input).

23

2.5.2 Concurrent executions for many pairs of parties

We now show the generalization to the case where many different parties execute the session-key
protocol simultaneously. This includes the case that the adversarial channel controls any number
of the legitimate parties.23 Specifically, we claim that for m invocations of the protocol (which
must be sequential for the same pair of parties using the same password and may be concurrent
otherwise), the difference between the ideal and real executions is at most O(mε).

We show this in the case of m different pairs, each pair executing a single invocation (the general
case is similar). That is, there are m pairs of parties (A1, B1), . . . , (Am, Bm), and each pair shares a
secret password wi ∈R D. (We do not assume that the A’s and B’s are distinct, yet do assume that
for each i 6= j, the passwords wi and wj are independently chosen.) Then, the formal definition
of security in this scenario is obtained by the natural generalization of the basic definition. That
is, an ideal execution is defined where the trusted party works with each pair independently and
each execution is the same as in the basic single-execution case. We note that this means that the
adversary can choose its input bit b differently in each of the m executions. The real execution is
also defined in the natural way, where m different pairs of parties with independent passwords run
concurrently in the network. We denote by multi-realm

Ĉ
(D, σ) the output of such a real execution

with m pairs of parties. That is, let wi be the shared password of (Ai, Bi). Then,

multi-realm
Ĉ

(D, σ) =
(
(w1, output(A1), output(B1)), . . . , (wm, output(Am), output(Bm)), output(C(σ))

)

where output(C(σ)) denotes the output of C after all m concurrent executions. The distribu-
tion multi-idealm

C (D, σ) is defined in an analogous way. In this section, we prove the following
proposition:

Proposition 2.9 Consider a protocol for password-based authenticated session-key generation that
is secure according to Definition 2.4. Then, for every polynomial function m = m(n) and every
ppt real-model adversary C playing concurrent executions (as described above), there exists a ppt
ideal-model adversary Ĉ, such that

{
multi-idealm

Ĉ
(D, σ)

}
n,D,σ

O(mε)≡
{
multi-realm

C (D, σ)
}

n,D,σ

In order to prove Proposition 2.9, we first show that any secure session-key generation protocol has
a canonical ideal-model adversary (simulation). This canonical adversary will be such that it can
be used to simulate in the multi-execution case.

We first define the following distribution, which is a mental experiment:

mentalC(D, σ) def= (w, output(A), output(B), output(CA(w′),B(w′)(σ)))

where w, w′ ∈R D are passwords that are uniformly and independently chosen from the dictionary.
That is, the difference between real and mental is whether or not the parties A and B use the
same password that appears as the first element in the distribution, or an independently chosen
password. We stress that in the mental distribution, output(A) and output(B) relate to the
parties’ outputs from the execution CA(w′),B(w′), where they use the password w′ (and not w).
Intuitively, mental and real can be distinguished with probability at most O(ε); otherwise, the
protocol reveals more than “O(ε) information” about the password. However, we are actually
interested in the probability of distinguishing mental and ideal.

23The importance of this extension was pointed out by Boyarsky [14].

24

Claim 2.10 Let C be a ppt real-model adversary and let Ĉ be the ppt ideal-model adversary such
that {

idealĈ(D, σ)
}

n,D,σ

O(ε)≡ {realC(D, σ)}n,D,σ

as guaranteed by Definition 2.4. Then,

{mentalC(D, σ)}n,D,σ

O(ε)≡ {
idealĈ(D, σ)

}
n,D,σ

Proof: Intuitively, since mental and real cannot be distinguished and ideal and real cannot
be distinguished, the same holds for mental and ideal. Formally, let dist be a distribution
which is either sampled from idealĈ(D, σ) or realC(D, σ). Then, consider the transformation
obtained by replacing the first element in dist with a random password w̃ ∈R D. Now, if dist
was sampled from idealĈ(D, σ), then the result is still a random sample from idealĈ(D, σ). This
holds because the password w in the ideal distribution is chosen independently of everything else.
However, if dist was sampled from realC(D, σ), then the result is exactly a random sample from
mentalC(D, σ). This is because the only difference between the real and mental distribution is
whether the parties’ use the same password that appears as the first element, or an independent
one.

We conclude that any machine distinguishing mental and ideal with probability p can be used
to distinguish between real and ideal with probability p. Since, by the security of the protocol,
real and ideal can be distinguished with probability at most O(ε), it holds that mental and
ideal can also be distinguished with probability at most O(ε).

The above claim yields the following canonical ideal-model adversary:

Canonical ideal-model adversary Ĉcan. Let C be a real-model adversary. Then, upon aux-
iliary input σ, the ideal-model adversary Ĉcan works by choosing a random password w′ ∈R D,
and perfectly emulating CA(w′),B(w′)(σ). That is, Ĉcan invokes the real-model adversary C with
input σ, and plays the roles of A and B with input w′ in their interaction with C. At the end of
this emulation, Ĉcan must send a bit to the trusted party (to state whether B should output ⊥ or
receive the same uniform key as A). Ĉcan checks whether B accepts or rejects in the emulation
that it ran. Then, Ĉcan sends 1 to the trusted party if and only if B accepts. (We note that this
accept/reject also appears in C’s view, by the definition of real.) Following this, Ĉcan outputs
the view of C and halts. We stress that Ĉcan uses only black-box access to C and does not rewind
C at all (this has sometimes been called “straight-line black-box simulation”).

We now prove that the distribution generated by an ideal execution with adversary Ĉcan is at
most O(ε) far from the distribution generated by an ideal execution with the adversary Ĉ that is
guaranteed to exist for C (by the security of the protocol). That is,

Claim 2.11 Let C and Ĉ be as in Claim 2.10, and let Ĉcan be as defined above. Then,

{
idealĈcan

(D, σ)
}

n,D,σ

O(ε)≡ {
idealĈ(D, σ)

}
n,D,σ

Proof: Notice that the canonical ideal-model adversary Ĉcan generates a distribution very similar
to that of mentalC . Therefore, by Claim 2.10, the resulting distribution should be close to idealĈ .

25

The only difference is with respect to the outputs of A and B (i.e., A’s output is Un instead of its
output from the protocol and B’s output depends on the bit sent by Ĉcan). Intuitively, due to the
security of the protocol, this also makes no difference.

Formally, let dist be a distribution that is either sampled according to mentalC(D, σ) or
idealĈ(D, σ). Then, consider the transformation obtained by replacing the second element (i.e.,
A’s output) by a uniformly distributed string k ← Un, and the third element (i.e., B’s output)
by either k or ⊥, depending on the accept/reject bit that appears in the fourth element of the
distribution (that is either C or Ĉ’s view/output depending on whether dist equals mentalC or
idealĈ).

If dist is sampled according to idealĈ(D, σ), then the result of the transformation can be
distinguished from idealĈ with probability at most O(ε). This can be seen as follows. First, the
output of Â is identically distributed in both cases. It remains to show that the output of B̂ differs
with probability at most O(ε). The only time that a difference can occur is if the view output by
Ĉ in the distribution has that B̂ accepted, and yet B̂’s output is ⊥, or vice versa. However, the
real model adversary’s view always contains the correct accept/reject bit of B. Therefore, in the
ideal model, this bit in the view output by Ĉ can be inconsistent with B̂’s actual accept/reject
bit with probability at most O(ε); otherwise, the real and ideal models can be distinguished with
probability greater than O(ε). We conclude that when dist is sampled according to idealĈ(D, σ),
the result of the transformation can be distinguished from idealĈ(D, σ) with probability at most
O(ε).

However, if dist is sampled according to mentalC , then the result of the transformation is
distributed exactly according to idealĈcan

(D, σ). This follows directly from the definition of the
ideal model and the ideal-model adversary Ĉcan. (Recall that Ĉcan sends 1 to the trusted party
if and only if B accepts in its emulation. Further recall that the accept/reject bit of B correctly
appears in C’s view as output by Ĉcan in the emulation.)

Combining the above, we have that any machine distinguishing idealĈ(D, σ) and idealĈcan
(D, σ)

with probability p can be used to distinguish between mentalC and idealĈ with probability at
least p−O(ε). Since, by Claim 2.10, mentalC and idealĈ can be distinguished with probability at
most O(ε), it holds that p (i.e., the probability of distinguishing idealĈ(D, σ) and idealĈcan

(D, σ))
is bounded by O(ε) + O(ε) = O(ε).

Now, let C be a real-model adversary and let Ĉ be the ideal-model adversary that is guaranteed
to exist by the security of the protocol. By Claim 2.11, we have that the distribution generated
by Ĉcan is only O(ε) far from idealĈ(D, σ). Furthermore, by the security of the protocol, we have
that {

idealĈ(D, σ)
}

n,D,σ

O(ε)≡ {realC(D, σ)}n,D,σ

We conclude that idealĈcan
(D, σ) is at most O(ε) far from realC(D, σ). That is,

Lemma 2.12 Consider any protocol for password-based authenticated session-key generation that
is secure according to Definition 2.4, and let C be any real-model adversary. Then, for the ideal-
model adversary Ĉcan as defined above,

{
idealĈcan

(D, σ)
}

n,D,σ

O(ε)≡
{
realC(D, σ)

}
n,D,σ

26

Concurrent executions for many parties. Given the canonical simulator of Lemma 2.12, we
can prove Proposition 2.9. The proposition is proved using a standard hybrid argument. The main
point is that for any fixed i, the passwords in all other executions are independent of the password
in the ith execution. Thus, an adversary can choose the passwords for all other executions by
itself, thereby enabling it to internally (and perfectly) simulate these executions (even if they are
concurrent to the ith execution).

Proof of Proposition 2.9: Let C be a real-model adversary and let m be the number of
concurrent executions. Then, construct a multi-execution ideal-model adversary Ĉ based on the
canonical single-execution adversary Ĉcan. Adversary Ĉ follows the strategy of Ĉcan independently
for each execution. More formally, Ĉ invokes C with auxiliary input σ and chooses uniform pass-
words w1, . . . , wm ∈R D for each pair (A1, B1), . . . , (Am, Bm). Then, in the ith execution, Ĉ plays
the roles of Ai and Bi with shared password wi, forwarding all messages between the parties and
C. At the conclusion of the execution of (Ai, Bi), adversary Ĉ sends 1 to the trusted party for the
ith execution if and only if Bi accepts. At the conclusion of all executions, Ĉ outputs the view of
C and halts. We now prove that

{
multi-idealm

Ĉ
(D, σ)

}
n,D,σ

O(mε)≡
{
multi-realm

C (D, σ)
}

n,D,σ
(7)

In order to prove Eq. (7), we define a hybrid distribution in which the outputs of the first i
executions are generated from real executions with C and the outputs of the last m− i executions
are generated from ideal executions with Ĉ. That is, the first i executions are pure real executions
with C. However, the last m − i executions are ideal executions with adversary Ĉ following the
strategy of Ĉcan as described above. As in a regular ideal execution, Ĉ internally runs (Aj , Bj)
with a uniformly chosen password, and forwards all messages to C. Furthermore, Ĉ sends 1 to the
trusted party if and only if Bj accepts. We denote this hybrid execution by hybridi

C,Ĉ
(D, σ).

By the above definition, hybrid0
C,Ĉ

(D, σ) = multi-idealĈ(D, σ) and hybridm
C,Ĉ

(D, σ) =
multi-realC(D, σ). It therefore remains to show that for every i,

{
hybridi

C,Ĉ
(D, σ)

}
n, D,σ

O(ε)≡
{
hybridi+1

C,Ĉ
(D, σ)

}
n, D,σ

(8)

This follows from the fact that Ĉcan is a “good” ideal-model adversary for a single execution,
as shown in Lemma 2.12. That is, construct a single execution real-model adversary Ci who
works as follows. Ci internally emulates real executions of C with (A1, B1), . . . , (Ai, Bi) and ideal
executions of Ĉ with (Ai+2, Bi+2), . . . , (Am, Bm). In contrast, the messages of the i+1th execution
are sent externally. Now, consider the result of applying the single-execution canonical ideal-model
adversary Ĉcan to the adversary Ci. By the definition of Ĉ (who follows the strategy of Ĉcan as
described), we have that when Ĉcan is applied to Ci for a single ideal execution, the result is the
same as when the first i executions are real executions with C and the last m − i executions are
ideal executions with Ĉ; that is, the distribution obtained is essentially hybridi

C,Ĉ
(D, σ). On the

other hand, the result of a real execution with Ci is essentially hybridi+1

C,Ĉ
(D, σ) because here the

i+1th execution is real with C.24 Therefore, Eq. (8) follows from Lemma 2.12. Applying the hybrid
argument m times, we obtain Eq. (7), completing the proof.

24The only difference between the distributions generated by C and Ĉcan or hybridi and hybridi+1 relates to the
format of the output. Specifically, the output of the stand-alone session with Ci or Ĉcan consists of a single tuple
(w, output(A), output(B), output(C)), where the last output of the adversary contains the outputs of the internally
simulated executions of (A1, B1), . . . , (Ai, Bi) and (Ai+2, Bi+2), . . . , (Am, Bm). Thus, the hybrid distributions can
be generated by simply rearranging these outputs.

27

3 Our Session-Key Generation Protocol

Preliminaries: All arithmetic below is over the finite field GF(2n) which is identified with {0, 1}n.
For a review of cryptographic tools used and some relevant notations, see Appendix A.

In our protocol, we use a secure protocol for evaluating non-constant, linear polynomials (actu-
ally, we could use any family of 1–1 Universal2 hash functions). This protocol involves two parties
A and B; party A has a non-constant, linear polynomial Q(·) ∈ {0, 1}2n and party B has a string
x ∈ {0, 1}n. The functionality is defined by (Q, x) 7→ (λ,Q(x)); that is, A receives nothing and
B receives the value Q(x) (and nothing else). The postulate that A is supposed to input a non-
constant, linear polynomial can be enforced by simply mapping all possible input strings to the set
of such polynomials (this convention is used for all references to polynomials from here on). We
actually augment this functionality by having A also input a commitment to the polynomial Q (i.e.,
cA ∈ Commit(Q)) and its corresponding decommitment r (i.e., cA = C(Q, r)). Furthermore, B also
inputs a commitment value cB. The augmentation is such that if cA 6= cB (or cA /∈ Commit(Q)),
then B receives a special failure symbol. This is needed in order to tie the polynomial evaluation
to a value previously committed to in the main (higher level) protocol. The functionality is defined
as follows:

Definition 3.1 (augmented polynomial evaluation):
• Inputs: The input of Party A consists of a linear, non-constant polynomial Q over GF(2n), a

commitment cA to this Q, and a corresponding decommitment r. The input of Party B consists
of a commitment cB and a value x ∈ GF(2n).

• Outputs:

1. Correct Input Case: If cA = cB and cA = C(Q, r), then B receives Q(x).

2. Incorrect Input Case: If cA 6= cB or cA 6= C(Q, r), then B receives a special failure symbol,
denoted ⊥.

In both cases, A receives nothing.

We stress that the relevant input case can be determined from all inputs in polynomial-time, because
A provides both Q and r. Therefore, the augmented polynomial evaluation ideal functionality can
be computed in probabilistic polynomial-time and by [57, 33], it can be securely computed. (See
Appendix A.1 for the definitions of secure computation.)

3.1 The Protocol

Let f be a 1–1 one-way function and b a hard-core bit of f . A schematic diagram of Protocol 3.2,
is provided in Figure 1 (below).

Protocol 3.2 (password-based authenticated session-key generation)

Inputs: Parties A and B start with a joint password w, which is supposed to be uniformly dis-
tributed in D.

Outputs: A and B each output an accept/reject bit as well as a session-key, denoted kA and kB

respectively. The accept/reject bit is a public output, whereas the session-key is a local output.
(In normal operation kA = kB and both parties accept. As can be seen below, the public output
bit of A will always be accept. We will show that in case kA 6= kB the public output bit of B is
unlikely to be accept.)

28

Operation: The protocol proceeds in four stages.

1. Stage 1: (Non-Malleable) Commit

(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).
(b) A and B engage in a non-malleable (perfectly binding) commitment protocol in which

A commits to the string (Q,w) ∈ {0, 1}3n. Denote the random coins used by B in the
commitment protocol (where he plays the role of the receiver) by rB, and denote B’s
view of the execution of the commitment protocol by NMC(Q,w).25

After the commitment protocol terminates, B sends (the receiver’s coins) rB to A.
(This has no effect on neither the hiding property (which refers to what B can learn)
nor to the binding property (because the commitment phase is perfectly binding and
its execution has already terminated).)

2. Stage 2: Pre-Key Exchange – In this stage the parties generates strings πA and πB, from
which the output session-keys (as well as validation checks performed below) are derived.
Thus, πA and πB are called pre-keys, and the process of generating them is referred to as
“pre-key exchange”.

(a) A sends B a (perfectly binding) commitment c = C(Q, r), for a randomly chosen r.26

(b) A and B engage in an augmented polynomial evaluation protocol. A inputs the poly-
nomial Q as well as (c, r); whereas B inputs the password w (viewed as an element of
GF(2n)) as well as c.
(If indeed both parties input the same commitment value c = C(Q, r) (as well as (Q, r)
and w respectively) then B gets the output Q(w).)

(c) We denote B’s output by πB. (Note that πB is supposed to equal Q(w).)
(d) A internally computes πA = Q(w).

3. Stage 3: Validation

(a) A sends the string y = f2n(πA) to B.
(b) A proves to B in zero-knowledge that she has input the same polynomial in the non-

malleable commitment (performed in Stage 1) and in the ordinary commitment (per-
formed in Stage 2(a)), and that the value y is “consistent” with the non-malleable
commitment. Formally, A proves the following NP-statement:

There exists a pair (X1, x2) ∈ {0, 1}2n×{0, 1}n (where supposedly X1 = Q and
x2 = w) and random coins rA,1, rA,2 (where supposedly rA,1 and rA,2 are A’s
random coins in the non-malleable and ordinary commitments, respectively)
such that the following three conditions hold
i. B’s view of the non-malleable commitment stage (denoted above by NMC(Q,w))

is identical to the receiver’s view of a non-malleable commitment to (X1, x2),
where the sender and receiver’s respective random coins are rA,1 and rB.
(Recall that rB denotes B’s random coins in the non-malleable commitment,
and that it has been sent to A at the end of Stage 1(b).)27

25Recall that B’s view consists of his random coins and all messages received during the commitment protocol
execution.

26The purpose of this additional commitment to the polynomial Q is explained in Footnote 33.
27The view of a protocol execution is a function of the parties’ respective inputs and random strings. Therefore,

the sender’s input (X1, x2), and the party’s coins rA,1 and rB determine a unique possible view. Recall that B sent
rB to A following the commitment protocol. Thus, A has NMC(Q, w) (which includes rB), the committed-to value
(Q, w) and her own coins rA,1, enabling her to efficiently prove the above statement.

29

ii. c = C(X1, rA,2)
iii. y = f2n(X1(x2))

The zero-knowledge proof used here is the specific zero-knowledge proof of Richardson
and Kilian [51], with a specific setting of parameters. Specifically, we refer to the
setting of the number of iterations, denoted m, in the first part of the Richardson-
Kilian proof system. We set m to equal the number of rounds in Stages 1 and 2 of our
protocol plus any non-constant function of the security parameter. For further details,
see Appendix A.4.

(c) Let tA be the session transcript so far as seen by A (i.e., the sequence of all messages
sent and received by A so far), and let MACk be a message authentication code, keyed
by k. Then, A computes k1(πA) def= b(πA) · · · b(fn−1(πA)), where b is a hard-core bit of
f , and sends the value m = MACk1(πA)(tA) to B.

4. Stage 4: Decision

(a) A always accepts and outputs k2(πA) def= b(fn(πA)) · · · b(f2n−1(πA)).
(b) B accepts if and only if the following three conditions are satisfied:

i. y = f2n(πB), where y is the string sent by A to B in Step 3(a), and πB is B’s
output from the polynomial evaluation (as defined in Stage 2(c)).
(We stress that if πB = ⊥ then no y fulfills this equality, and B always rejects.)

ii. B accepts the zero-knowledge proof in Step 3(b).
iii. The MAC value received in Stage 3(c) passes as a valid authentication tag for the

session-transcript as seen by B, with respect to the MAC-key k1(πB) = b(πB) · · ·
b(fn−1(πB)). That is, Verifyk1(πB)(tB,m) = 1, where tB is the transcript of Stages 1
through 3(b) as seen by B, the string m is the alleged MAC-tag that B received
in Stage 3(c), and MAC-verification is with respect to the MAC-key k1(πB) =
b(πB) · · · b(fn−1(πB)).

In case B accepts, he outputs the session-key k2(πB) = b(fn(πB)) · · · b(f2n−1(πB)),
otherwise he outputs ⊥. (Recall that the accept/reject decision bit is considered a
public output.)

We stress that A and B always accept or reject based solely on these criteria, and that
they do not halt (before this stage) even if they detect malicious behavior.

In our description of the protocol, we have referred only to parties A and B. That is, we have
ignored the existence (and possible impact) of the channel C. That is, when A sends a string z to
B, we “pretend” that B actually received z and not something else. In a real execution, this may
not be the case at all. In the actual analysis we will subscript every value by its owner, as we have
done for πA and πB in the protocol. For example, we shall say that in Step 3(a), A sends a string
yA and the string received by B is yB.

3.2 Motivation for the Protocol

We suggest to the reader to start by considering the schematic diagram of Protocol 3.2, as provided
in Figure 1.

3.2.1 On the general structure of the protocol

The central module of Protocol 3.2 is the secure polynomial evaluation. As suggested by Naor
and Pinkas [48], this module (by itself) suffices for achieving security against passive channels (but

30

-

-

-

-

HHHj ©©©¼

HHHj

? ?
Party B

NM-Commit(Q,w)

Secure Polynomial
Evaluation

f2n(Q(w))

ZK-proof of consistency

MAC of transcript

w

Q(w)

Q

Q ∈R {0, 1}2n

Party A

Decision

If accept, output key:Output key:

k2(Q(w))k2(Q(w))

ww

Figure 1: Schematic Diagram of the Protocol.

not against active ones). Specifically, consider the following protocol. Party A chooses a random,
linear polynomial Q and inputs it into a secure polynomial evaluation with party B who inputs the
joint password w. By the definition of the polynomial evaluation, B receives Q(w) and A receives
nothing. Next, A internally computes Q(w) (she can do this as she knows both Q and w), and
both parties use this value as the session-key. The key is uniformly distributed (since Q is random
and linear) and due to the secrecy requirements of the polynomial evaluation, the protocol reveals
nothing of w or Q(w) to a passive eavesdropper C (since otherwise this would also be revealed to
party A who should learn nothing from the evaluation). generates

One key problem in extending the above argument to the active channel setting is that the
standard security definitions of two-party computation (which refer to the stand-alone setting)
guarantee nothing about what happens in the concurrent setting. In fact, one can show that
the simplified protocol (as outlined in the previous paragraph) is not secure against an active
adversary. We now provide some intuition as to why our protocol, which is derived via significant
augmentations of the simplified protocol, is nevertheless secure.

First, assume that the MAC-value sent by A at the conclusion of the protocol is such that unless
C “behaved passively” (i.e., relayed all message without modification), then B rejects (with some
high probability). Now, if C behaves passively, then B clearly accepts (as in the case of honest
parties A and B that execute the protocol without any interference). On the other hand, if C
does not behave passively, then (by our assumption regarding the MAC-value) B rejects. However,
C itself knows whether or not it behaved passively and therefore can predict whether or not B

31

will reject. In other words, the accept/reject bit output by B is simulatable (by C itself). We
proceed by observing that this bit is the only meaningful message sent by B during the protocol:
apart from in the polynomial evaluation, the only messages sent by B are as the receiver in a non-
malleable commitment protocol and the verifier in a zero-knowledge proof (clearly, no knowledge
of the password w is used by B in these protocols). Furthermore, the polynomial evaluation is such
that only B receives output. Therefore, intuitively, the input used by B is not revealed by the
execution; equivalently, the view of C is (computationally) independent of B’s input w (this can be
shown to hold even in our concurrent setting). We conclude that all messages sent by B during the
execution can be simulated without knowledge of w. Therefore, by indeed simulating B, we can
reduce the concurrent scenario involving A, C and B to a (standard) two-party setting between A
and C. In this (standard) setting, we can apply standard tools and techniques for simulating C’s
view in its interaction with A, and conclude that the entire real execution is simulatable in the
ideal model. Hence, assuming that the MAC-value is accepted if and only if C “behaves passively”,
the protocol is secure.

Thus, the basis for simulating C’s view (which means security of our protocol) lies in the security
of the MAC in our scenario. Indeed, the MAC is secure when the parties using it (a priori) share a
random MAC-key; but in our case the parties establish the MAC-key during the protocol itself, and
it is not clear that this key is random nor the same in the view of both parties. In order to justify
the security of the MAC (in our setting), two properties must be shown to hold. Firstly, we must
show that with high probability either A and B hold the same MAC-key or B is going to reject
anyhow (and C knows this). Secondly, we need to show that this (identical) MAC-key held by A
and B has “sufficient pseudorandomness” to prevent C from successfully forging a MAC-value.

In some sense, we are back to the original problem (of generating a shared secret key). However,
notice that the security of the MAC-key only needs to hold before B concludes and outputs accept
or reject. Since proving the security of the MAC-key does not require the simulation of B’s output
accept/reject bit, it is easier to prove than the security of the shared session-key.28 Nevertheless,
this part of the proof is still the hardest.

3.2.2 On some specific choices

Using a pseudorandom generator. In the protocol, we implicitly use a pseudorandom generator
defined by G(s) = b(s) · · · b(f2n−1(s)) · f2n(s). As discussed in Appendix A.5, this is a “seed-
committing” pseudorandom generator (i.e., f2n(s) uniquely determines s). To see why this type of
a pseudorandom generator is relevant to us, recall that as part of the validation stage, some function
F of πB is sent by A to B, whereas another function k1 (of πB) is used to derive the MAC-key,
and yet another function (i.e., k2) is used to derive the output session-key. The properties required
from F are that firstly it be 1–1 (so that F (πB) uniquely determines πB), and secondly that the
MAC-key and the output session-key (also derived from πB) be pseudorandom, even though the
adversary is given F (πB). Viewed in this light, using a seed-committed pseudorandom generator
(while setting F (·) = f2n(·) and G(·) = k1(·)k2(·)f2n(·)) is a natural choice.

On the use of linear polynomials. The pre-keys are generated by applying a random, linear,
non-constant polynomial on the password. Such a polynomial is used for the following reasons.
Firstly, we need “random 1–1 functions” that map each dictionary entry to a uniformly distributed
n-bit string. The 1–1 property is used in saying that Q and π uniquely determine w such that

28Indeed, the fact that B has not yet output its accept/reject bit is crucial in our proof of the unforgeability of the
MAC.

32

Q(w) = π.29 Secondly, we desire that for w′ 6= w, the values Q(w′) and Q(w) be (almost) in-
dependent. This ensures that if C guesses the wrong password and obtains Q(w′), it will gain
no information on the actual key Q(w). (Essentially, any family of 1–1 Universal2 hash functions
would be appropriate.)

We note that the security of the protocol relies on the fact that non-constant polynomials are
indeed used (and, for example, the adversary does not try to use a constant polynomial). This
particular issue is dealt with by the fact that a secure polynomial evaluation protocol is used and
by the convention (discussed before Definition 3.1) that all possible input strings are mapped to
the set of non-constant polynomials.

3.3 Properties of Protocol 3.2

The main properties of Protocol 3.2 are captured by the following theorem.

Theorem 3.3 Suppose that all the cryptographic tools used in Protocol 3.2 satisfy their stated
properties. Then Protocol 3.2 constitutes a secure protocol for (augmented) password-based authen-
ticated session-key generation (as defined in Definition 2.5).

As we have mentioned above, Protocol 3.2 also fulfills the additional property of intrusion detection.

Protocol 3.2 as a feasibility result: All of the cryptographic tools used in Protocol 3.2 can be
securely implemented assuming the existence of 1–1 one-way functions and collections of enhanced
trapdoor permutations. Thus, at the very least, Theorem 3.3 implies the feasibility result captured
by Theorem 2.7. In Appendix A, we show how each primitive can be constructed from the above
assumptions.

We note that the assumption regarding 1–1 one-way functions is used only for obtaining a
seed-committing pseudorandom generator (all other primitives can be obtained from collections of
enhanced trapdoor permutations). Such functions are known to exist under the RSA and Discrete
Logarithm problems [31]. We leave open the question of obtaining a protocol that is secure under the
sole assumption of the existence of collections of enhanced trapdoor one-way permutations. (Note
that 1–1 one-way functions are not implied by the existence of collections of one-way permutations.)

Protocol 3.2 as a basis for efficient solutions: We now briefly discuss the efficiency of our
protocol. From this perspective, the most problematic modules of the protocol are the non-malleable
commitment, the secure (augmented) polynomial evaluation, and the zero-knowledge proof of [51].
Focusing on round complexity, we make the following observations: First, by a recent general
result of Lindell [42] (building on [57, 33]), the secure (augmented) polynomial evaluation can
be implemented in a constant number of rounds. Second, by using a round-efficient version of the
zero-knowledge proof of [51] based on claw-free functions (see Appendix A.4), the number of rounds
of communication required for this proof is m + O(1), where m equals the number of rounds in
the first two stages of our protocol plus some non-constant function in the security parameter (say
log log n). In fact, as discussed in Section 6.1.1, this can be reduced to a single additional round. We
thus conclude that the main bottleneck with respect to the number of rounds of communication

29In particular, if a constant polynomial is allowed then C could choose a constant Q′ and run the entire protocol
with B using Q′. Since Q′ is constant, πB = Q′(w) is a fixed value and is thus known to C. Furthermore, C
can execute the zero-knowledge proof in the validation stage correctly, because y = f2n(Q′(w)) = f2n(Q′(w′)) is
consistent with NMC(Q′, w′) for every w′ (rather than only for w′ = w). We conclude that (under such a flawed
modification) B accepts with a session key known to C, in contradiction to the session-key secrecy requirement.

33

is due to the non-malleable commitment. In a recent result by Barak [1], it was shown (under
stronger complexity assumptions) that non-malleable commitments can be achieved for a constant
number of rounds. Thus, using this non-malleable commitment, we indeed obtain a constant-round
protocol.

Turning to the bandwidth (i.e., length of messages) and the computational complexity of our
protocol, we admit that both are large, but this is due to the corresponding complexities of the prob-
lematic modules mentioned above. Any improvement in the efficiency of these modules (which is,
fortunately, an important open problem) would yield a corresponding improvement in the efficiency
of our protocol.

4 Analysis of Protocol 3.2: Proof Sketches

Regrettably, due to reasons mentioned in the introduction and further discussed below, the analysis
of Protocol 3.2 is quite involved. In order to focus on the main ideas of this analysis, we provide
its essence in the current section, while deferring some details to subsequent sections.

4.1 Preliminaries

Recall that the (adversarial) channel (or adversary) C may omit, insert and modify any message
sent between A and B. Thus, in a sense C conducts two separate executions: one with A in which
C impersonates B (called the (A,C) execution), and one with B in which C impersonates A (called
the (C,B) execution). These two executions are carried out concurrently (by C), and there is no
explicit execution between A and B. Furthermore, C has full control of the scheduling of the (A,C)
and (C, B) executions (i.e., C may maliciously decide when to pause one execution and continue
the other). For this reason, throughout the proof we make statements to the effect of: “when A
executes X in her protocol with C then...”. This reflects the fact that the separate (A,C) and
(C,B) executions may be at very different stages.

We note that there are currently no tools for dealing with (general) concurrent computation
in the two-party case.30 Our solution is therefore based on an ad-hoc analysis of (two) concurrent
executions of specific two-party protocols that are secure as stand-alone (i.e., when only two parties
are involved and they conduct a single execution over a direct communication line). Our analysis
of these executions proceeds by using specific properties to remove the concurrency and obtain a
reduction to the stand-alone setting. That is, we show how an adversarial success in the concurrent
setting can be translated into a related adversarial success in the stand-alone setting. This enables
us to analyze the adversary’s capability in the concurrent setting, based on the security of two-party
stand-alone protocols.

We stress that we make no attempt to minimize the constants (in O(ε) terms) in our proofs. In
fact, some of our proofs are clearly wasteful in this sense and the results we obtain are not tight.
Our main objective is to make our (regrettably complex) proofs as modular and simple as possible.

Channel’s output and view: We will assume, without loss of generality, that the adversary’s
output always includes its view of the execution (because the adversary can always be modified so
that this holds). In fact, the reader may assume (also without loss of generality) that the adversary’s
output always equals its view (because the output is always efficiently computable from the view).

30There is work relating to concurrently-secure honest-majority computation (cf. [17]). However, this does not
apply to the two-party case and furthermore assumes the existence of direct (and reliable) communication channels
between all parties.

34

Reliable channels: For the proof, we define the concept of a reliable channel. We say that a
channel C is reliable in a given protocol execution if C runs the (A,C) and (C,B) executions in a
synchronized manner and does not modify any message sent by A or B. That is, any message sent by
A is immediately forwarded to B (without modification), and vice versa. This property is purely
syntactic and relates only to the bits of the messages sent in a given execution of the protocol.
In essence, an execution for which C is reliable looks like an execution via a passive adversary.
However, C may decide at any time during the protocol execution to cease being reliable (this
decision is possibly based on its current view and may be probabilistic). This is in contrast to a
passive adversary who, by definition, only eavesdrops on the communication.

Notation: We present some notation that is used throughout the proof. As we have seen,
CA(w),B(w) denotes an execution of C with A and B, where the parties’ joint password is w.
Likewise, denote by CA(Q,w),B(w) an execution of C with A and B, where A is modified so that she
receives the random (non-constant, linear) polynomial Q to be used in the protocol as additional
input (recall that A’s input in the protocol is defined to be the password w only). We note that
such a modification makes no difference to the outcome since in the protocol definition, party A
begins by choosing such a random polynomial Q. This modification is made for the sake of the
analysis and enables us to refer explicitly to Q when, for example, relating to the session-key output
by A, which is defined as k2(Q(w)) in the protocol. Sometimes in the proof, we refer to stand-alone
executions of an adversary with A or B. In such a case, we denote by CA(Q,w) (resp., CB(w)) a
stand-alone execution of the protocol between C and A (resp., B).

We note that, for the sake of simplicity, we often omit explicit reference to C’s auxiliary input
σ, and therefore write CA(Q,w),B(w) rather than CA(Q,w),B(w)(σ). All our proofs do, however, hold
with respect to such an auxiliary input.

Throughout our proof, it is often important to consider the accept/reject decision-bit output by
B (recall that this bit is public and therefore known to C). We denote by “decB = acc” the case
that B outputs accept, and likewise “decB = rej” the case that B outputs reject. We also often
refer to the event that C is reliable or not. Thus, we denote “reliableC = true” if C was reliable in
the given execution, and “reliableC = false” otherwise.

The basic and augmented definitions of security: We prove that Protocol 3.2 is a secure
password-based authenticated session-key generation protocol with respect to the basic definition
(i.e., Definition 2.4). The proof of security with respect to the augmented definition (i.e., Def-
inition 2.5) is obtained by minor modifications, which are noted where relevant. Our choice of
presenting the proof with respect to Definition 2.4 is due to the desire to avoid the more cumber-
some formalism of Definition 2.5, while realizing that the main issues of security arise already in
Definition 2.4.

4.2 Organization and an Outline of the Proof

Due to the length and complexity of our proof, we leave the full proofs of the central lemmas to
later sections. Instead, intuitive proof sketches are provided in-place. Unless otherwise stated, the
sketches are quite precise and the full proofs are derived from them in a straightforward manner.

The cases of passive and active adversaries (i.e., Parts 1 and 2 of Definition 2.4) are dealt
with separately. The proof of security against passive adversaries can be found in Section 4.3 (with
further details in Section 5). On the other hand, the proof sketches for the case of active adversaries
span Sections 4.4 to 4.7, with the full proofs presented in Sections 6 to 8.

35

We now outline the high-level structure of the proof of security against active adversaries.
Conceptually, our proof works by first simulating B’s role in the (C, B)-execution, and thus reducing
the entire analysis to one of a stand-alone (A,C)-execution. However, in order to do this simulation,
we need to show how B’s accept/reject bit can be simulated (see the motivating discussion in
Section 3.2.1). The main property needed for this task is what we call key-match. This property
states that the probability that B accepts and yet the pre-keys are different (i.e., πB 6= πA) is at
most O(ε) + µ(n). (Recall that the pre-key πB is B’s output from the polynomial evaluation and
πA = Q(w).) Then, given the key-match property, we are able to show the simulatability of B’s
accept/reject bit, and thus the simulatability of the entire (C, B) execution. Specifically, we show
that for every C interacting with A and B, there exists an adversary C ′ interacting with A only,
such that

{w, k2(Q(w)), output(CA(Q,w),B(w))} O(ε)≡ {w, k2(Q(w)), output(C ′A(Q,w))} (9)

Then, we continue by proving that C ′’s view in this two-party (stand-alone) setting with A only,
can also be simulated. Specifically, we show that for every C ′ interacting with A only, there exists
a non-interactive machine C ′′ such that

{w, k2(Q(w)), output(C ′A(Q,w))} O(ε)≡ {w,Un, output(C ′′)} (10)

Combining Equations (9) and (10) brings us quite close to proving that the ideal and real
distributions are (1 − O(ε))-indistinguishable. To see this, recall that in the real-model A always
outputs k2(Q(w)), and in the ideal-model Â always outputs Un. Thus, the above equations imply
the existence of a non-interactive machine Ĉ (similar to the ideal-model machine) for which

{w, output(A), output(CA(w),B(w))} O(ε)≡ {w, output(Â), output(Ĉ)} (11)

However, this is not enough since the ideal and real distributions also include B’s output. There-
fore, Eq. (11) must be “extended” to include B’s output as well. This is achieved by using (a
consequence of) the key-match property described above.

The key-match property is proven in Sections 4.4 and Section 6. Next, the proof of Eq. (10) is
presented (in Sections 4.5 and 7). (Conceptually, this proof should come after the proof of Eq. (9);
however, significant parts of it are used in order to prove Eq. (9) and thus the order is reversed.)
Finally, Eq. (9) is proven in Sections 4.6 and 8, and the “extension” of Eq. (11) to complete the
proof is shown in Section 4.7. These dependencies are shown in Figure 2.

We remark that while proving the key-match property, we show how (and under what circum-
stances) A’s zero-knowledge proof can be simulated in our concurrent setting (Section 6.1.1). We do
not know how to show this using any zero-knowledge proof; rather our simulation utilizes properties
of the specific proof system of Richardson and Kilian. Furthermore, the “zero-knowledge property”
of the proof system in our setting is not derived merely from the fact that the Richardson and
Kilian system proof is concurrent zero-knowledge, but rather from its specific structure (which is
the key to its being concurrent zero-knowledge). Note that concurrent zero-knowledge only refers
to a setting where many instances of the same proof system are run concurrently, but says nothing
about a setting (such as ours) in which the proof system is run concurrently with other protocols.
Furthermore, it does not cover settings where the adversary controls a prover in one instance and
a verifier in another (i.e., man-in-the-middle attacks).

36

Key Match [Thm 4.5]

Simulate (A,C) [Thm 4.8] Simulate (C,B) [Thm 4.6]

Simulate B’s Decision [Lem 4.11]

Prop. 4.13: the prob. that C is unreliable

Active Security [Thm 4.14]

Sec 4.4

Sec 4.6

Sec 4.5

Sec 4.7

 and B accepts is O(ε)

Figure 2: The structure of the proof of security for active adversaries. Solid arrows show direct
applications of results, whereas dashed arrows show adaptation of proof techniques.

4.3 The Security of Protocol 3.2 for Passive Adversaries

In this section, we consider the case of a passive adversarial channel. In this case, the ideal and
real distributions are required to be computationally indistinguishable (rather than being just
(1−O(ε))-indistinguishable).

Notice that in the case that the channel C is passive, the setting is actually that of standard
two-party computation, in which both parties are honest and the adversary can only eavesdrop on
their communication. Despite this, the definitions of multi-party computation do not immediately
imply that C cannot learn anything in this context. This is because the definitions relate to an
adversary C who “corrupts” one or more parties. However, here we are dealing with the case that
C corrupts zero parties and we must show that in this case, C learns nothing about any party’s
inputs or outputs.

Theorem 4.1 (passive executions): Protocol 3.2 satisfies Condition 1 in Definition 2.4. That is,
for every ppt real-model passive adversary C there exists a ppt ideal-model adversary Ĉ that always
sends 1 to the trusted party such that

{
idealĈ(D, σ)

}
n,D,σ

c≡ {realC(D, σ)}n,D,σ

where D ⊆ {0, 1}n is any ppt samplable dictionary and σ ∈ {0, 1}poly(n) is the auxiliary input for
the adversary.

Proof: We first note that in this case parties A and B both output the same session-key, k2(Q(w)),
and they both accept. Thus, it is enough to prove the following lemma:

Lemma 4.2 For every passive ppt channel C,
{
w, k2(Q(w)), output(CA(Q,w),B(w)(σ))

}
c≡

{
w,Un, output(CA(Q,w̃),B(w̃)(σ))

}

37

where Q is a random non-constant linear polynomial, and w and w̃ are independently and uniformly
distributed in D.

This lemma implies the theorem because the ideal-model adversary Ĉ can simulate an execution
for the real-model adversary C by choosing Q and w̃ and invoking CA(Q,w̃),B(w̃)(σ). Furthermore,
since C is passive, A and B’s outputs are always identical, and equal to k2(Q(w)) in the real model
and Un in the ideal model. The full real and ideal distributions can thus be derived from the
distributions in the lemma by simply repeating the second element twice. The theorem therefore
follows directly from Lemma 4.2.

The proof of Lemma 4.2 can be found in Section 5. Since C is a passive adversary (in this case),
the proof is relatively straightforward and is based on the security of two-party protocols.

Security for executions in which C is reliable: We now strengthen the “passive adversary”
requirement to include executions in which an active adversary C is reliable. Loosely speaking,
we show that in real executions for which C is reliable, the output distribution is computationally
distinguishable from in the ideal model. This is a stronger result because a passive channel is
always reliable, but an active channel may sometimes be reliable and sometimes not. Furthermore,
such an active channel may dynamically decide whether or not to be reliable, possibly depending
on what occurs during the protocol execution. Despite this, we show that in a given execution for
which the channel is reliable, it can learn no more than if it was passive.

Proposition 4.3 For every ppt real-model adversary C there exists an ideal adversary Ĉ such that
for every ppt distinguisher D, for every polynomial p(·), all sufficiently large n’s and all auxiliary
input σ ∈ {0, 1}poly(n),

∣∣Pr[D(idealĈ(D, σ)) = 1 & reliableC = true]

−Pr[D(realC(D, σ)) = 1 & reliableC = true]| < 1
p(n)

where, in the first probability, reliableC refers to whether or not the execution view of the channel
C as included in the output of Ĉ indicates that C is reliable in the said execution.31

Proof: As in Theorem 4.1, in executions for which C is reliable, both A and B output k2(Q(w))
and both accept. Thus it is enough to show an equivalent of Lemma 4.2 for a reliable channel
(rather than a passive channel). This is shown using the following claim:

Claim 4.4 For every ppt active channel C there exists a passive channel C ′ such that for every
ppt distinguisher D and every randomized process z = Z(Q,w)

Pr[D′(z, output(C ′A(Q,w),B(w))) = 1] = Pr[D(z, output(CA(Q,w),B(w))) = 1 & reliableC = true]

where D′(z, 0) def= 0 and D′(z, γ) def= D(z, γ) otherwise (i.e., for any γ 6= 0).
31Recall that the output of C, included in realC , contains the view of C. Thus, it is natural to assume that the

output of Ĉ, included in idealĈ , also contains such a view. Formally, we may use a parsing rule that applied to Ĉ’s

output (included in idealĈ), always yields some legal view of C. Alternatively, if Ĉ’s output (included in idealĈ)
does not contain such a legal view, we define reliableC to be false.

38

Proof Sketch: The proof is based on having C ′ emulate an execution for C. Since C ′ is passive, it
receives a message transcript of messages sent between A and B. Channel C ′’s emulation involves
passing the messages of the transcript (in order) to C, and checking whether or not C is reliable
(i.e., forwards all messages immediately and unchanged to their intended receiver). If C is not
reliable (and thus C ′ cannot continue the emulation), then C ′ halts and outputs 0. On the other
hand, if C is reliable throughout the entire execution, then C ′ outputs whatever C does from the
experiment. The equality is obtained by considering the following two cases: In case C is reliable,
C ′’s emulation is perfect and the output of D′ equals the output of D (because the output of C ′,
which equals the output of a reliable C, is definitely not 0). On the other hand, in case C is
unreliable, C ′ outputs 0 and so does D′.

Using Claim 4.4, we obtain the analogous result of Lemma 4.2 for reliable channels. That is, we
prove that for every ppt distinguisher D
∣∣∣∣∣Pr

[
D(w, k2(Q(w)), out(CA(Q,w),B(w))) = 1

& reliableC = true

]
− Pr

[
D(w,Un, out(CA(Q,w̃),B(w̃))) = 1

& reliableC = true

]∣∣∣∣∣ = µ(n)

(12)
where out(·) is shorthand for output(·). Eq. (12) follows by applying Claim 4.4 to each of the
two probabilities in the equation (once setting z = (w, k2(Q(w))) and once setting z = (w, Un)
(while switching the roles of w and w̃)), and applying Lemma 4.2 to the result. Using Eq. (12), the
proposition follows (analogously to the way Theorem 4.1 follows from Lemma 4.2).

Security for the augmented definition: In the case that C is passive (or reliable), the session-
key challenge received (in the augmented setting) after the first party terminates is of no conse-
quence. This is because C (being passive or just reliable) makes no use of this message (it simply
becomes a part of its view). Therefore, the distinguisher (in the basic setting), who always receives
the session-key (since it is part of the output distribution), can generate the output distribution of
the augmented setting. Thus, in case C is passive, the basic definition implies the augmented one.

4.4 The Key-Match Property

We now prove the key-match property, which states that the probability that A and B both accept
but have different pre-keys is at most O(ε). This specific property will be used to establish the
security of the entire protocol. Recall that the pre-keys are πA

def= Q(w) and πB, where πB is B’s
output from the polynomial evaluation (conducted in Stage 2).

Theorem 4.5 (key-match): For every ppt adversarial channel C, every polynomial p(·) and all
sufficiently large n’s

Pr[decB = acc & πA 6= πB] < 3ε +
1

p(n)

Proof outline and rough sketch: The analysis is partitioned into two complementary subcases
related to the scheduling of the two executions (i.e., C’s execution with A and C’s execution with
B). The scheduling of these two executions may be crucial with respect to the non-malleable
commitments. This is because the definition of non-malleability (only) states that a commitment
is non-malleable when executed concurrently with another commitment.32 In an execution of

32In fact, by the definition, non-malleability is only guaranteed if the commitments are of the same scheme. Two
different non-malleable commitment schemes are not guaranteed to be non-malleable if executed concurrently.

39

our protocol, the commitment from C to B may be executed concurrently with the polynomial
evaluation and/or validation stage of the (A,C) execution. In this case, it is not clear whether or
not the non-malleable property holds.

We therefore prove the theorem by considering two possible strategies for C with respect to
the scheduling of the (A,C) and (C,B) executions. In the first case, hereafter referred to as
the unsynchronized case, we consider what happens if C completes the polynomial evaluation
with A before completing the non-malleable commitment with B. In this case, the entire (A,C)
execution may be interleaved with the (C, B) non-malleable commitment. However, according to
this scheduling, we are ensured that the (A,C) and (C,B) polynomial evaluation stages are run at
different times (with no overlap). Loosely speaking, this means that the polynomial QC input by C
into the (C, B) evaluation is sufficiently independent of the polynomial Q input by A in the (A,C)
evaluation. Recall that in the (A,C) execution, C only learns the value of Q(·) at a single point,
which we denote wC . Therefore, for every w′ 6= wC , the values QC(w′) and Q(w′) are independently
distributed. In particular, unless wC = w (which occurs with probability at most ε), the random
variables Q(w) and QC(w) are independently distributed, and so C has no clue regarding the value
of QC(w) (even if its view is augmented by the value Q(w)). Therefore, the probability that the
“y value” sent by C to B will match f2n(QC(w)) is at most ε. We conclude that B will reject with
probability at least 1−O(ε).

In the other possible scheduling, C completes the polynomial evaluation with A after completing
the non-malleable commitment with B. In this case, hereafter referred to as the synchronized case,
only the first two stages of the (A,C) execution may be run concurrently with the non-malleable
commitment of the (C,B) execution (and so these executions are more synchronized than in the
previous case). In this case we show how the (A,C) pre-key exchange can be simulated, and we
thus remain with a concurrent execution containing two non-malleable commitments only. Non-
malleability now holds and this prevents C from modifying the commitment sent by A, if B is to
accept. This yields the key-match property. 2

Further details on the proof of Theorem 4.5: We prove that for each of the two scheduling
cases, the probability that this case holds and the event referred to in Theorem 4.5 occurs (i.e., B
accepts and there is a key mismatch) is at most O(ε). A schematic description of the two cases is
given in Figure 3. Using the Union Bound, Theorem 4.5 follows. That is, Theorem 4.5 is obtained
by combining the following Lemmas 4.6 and Lemma 4.7, which refer to the two corresponding
scheduling cases.

4.4.1 Case (1) – The unsynchronized case

In this case, C completes the polynomial evaluation with A before completing the non-malleable
commitment with B. We actually prove a stronger claim here. We prove that according to this
scheduling, B accepts with probability less than 2ε + µ(n) irrelevant of the values of πA and πB.
This is enough because

Pr[decB = acc & πA 6= πB & Case 1] ≤ Pr[decB = acc & Case 1]

Lemma 4.6 (Case 1 – unsynchronized): Let C be a ppt channel and define Case 1 to be a scheduling
of the protocol execution by which C completes the polynomial evaluation with A before concluding
the non-malleable commitment with B. Then for every polynomial p(·) and all sufficiently large n’s

Pr[decB = acc & Case 1] < 2ε +
1

p(n)

40

Case 1 Case 2

A C B A C B

NMC

PE NMC

PE

NMC

PE

NMC

Figure 3: The two scheduling cases. NMC stands for non-malleable commitment, and PE stands
for polynomial evaluation.

Proof Sketch: In this case, the (C, B) polynomial evaluation stage is run strictly after the (A,C)
polynomial evaluation stage, and the executions are thus “independent” of each other. That is, the
polynomial evaluations are executed sequentially and not concurrently. For the sake of simplicity,
assume that the entire protocol consists of a single polynomial evaluation between A and C and a
single polynomial evaluation between C and B. Then, since the evaluations are run sequentially,
a party P can interact with C and play A’s role in the (A,C) execution and B’s role in the (C, B)
execution. Thus, we can reduce our concurrent setting to a two-party setting between C and P . In
this setting, C and P run two sequential polynomial evaluations: in the first polynomial evaluation
the party P (playing A’s role) inputs a polynomial Q and the party C inputs some wC , whereas
in the second polynomial evaluation C inputs a polynomial QC and P (playing B’s role) inputs
w. In the first polynomial evaluation C is supposed to obtain the output Q(wC), whereas in the
second polynomial evaluation C is supposed to get nothing and B is supposed to get QC(w). The
channel C “succeeds” if it can guess QC(w) (this is “comparable” to C successfully causing B to
accept by sending the correct value for y = f2n(QC(w))). In this (simplified) two party setting, it
can be shown that C can only succeed with probability ε (since C learns nothing about w from the
execution).

The actual reduction is more involved, since the (A,C) and (C,B) protocols involve other
steps beyond polynomial evaluation. Furthermore, some of these steps may be run concurrently
(unlike the polynomial evaluations which are executed sequentially according to this scheduling). do
Therefore, the main difficulty in the proof is in defining a two-party protocol between C and P that
correctly emulates the concurrent execution of our entire protocol (subject to the two polynomial
evaluations remaining sequential). Among other things, our proof utilizes properties of the specific
zero-knowledge proof of Richardson and Kilian [51]. We note that the way we solve this problem in
the full proof also handles the issues arising in connection with the augmented definition of security
(Def. 2.5).

41

The full proof of Lemma 4.6 is presented in Section 6.1, and (as hinted above) is far more complex
than the above proof sketch.

4.4.2 Case (2) – The synchronized case

We now show that the probability that C completes the polynomial evaluation with A after
completing the non-malleable commitment with B and the bad event referred to in Theorem 4.5
occurs (i.e., B accepts and there is a pre-key mismatch) is less than ε + µ(n).

Lemma 4.7 (Case 2 – synchronized): Let C be a ppt channel and define Case 2 to be a scheduling
of the protocol by which C completes the polynomial evaluation with A after completing the non-
malleable commitment with B. Then for every polynomial p(·) and for all sufficiently large n’s,

Pr[decB = acc & πA 6= πB & Case 2] < ε +
1

p(n)

Proof Sketch: As we have mentioned, in this scheduling case we can show that the non-
malleability property holds with respect to A’s commitment to the pair (Q,w). This is because
the (C, B) non-malleable commitment is run concurrently only with the (A,C) non-malleable com-
mitment and pre-key exchange. The main point is that the pre-key exchange can be simulated
using only knowledge of Q (and without w).33 Therefore, we can give C the polynomial Q and
reduce the scenario to one where the only protocols running are non-malleable commitments (as
required by the definition of non-malleability). Given this, we have that the probability that C
will commit to a pair (Q′, w′) where w′ = w is essentially the same as the probability of it guessing
the password w outright. (Recall that by the non-malleability of the commitment scheme, A’s
commitment including the password w does not help C in generating a commitment that includes
the same w. This holds unless C simply copies A’s commitment unmodified; however, then we can
show that B rejects unless πA = πB, in which case key-match holds). We denote C’s non-malleable
commitment by (Q′, w′).

We first consider the probability that w′ = w (i.e., that the second element in the pair committed
to by C equals the shared secret password of A and B), and Q′ 6= Q.34 Since A’s commitment does
not help C in generating this commitment, and since w is uniformly distributed in D with respect
to C’s view, the probability that C generates such a commitment (i.e., that w′ = w) is at most
negligibly more than ε. (Indeed, if C generates a commitment with w′ = w, then it may cause B
to accept, even when πA 6= πB.)

Next, if B receives a non-malleable commitment to (Q′, w′) where w′ 6= w, then the validation
stage ensures that B will reject. Essentially, this is because the (C, B) validation stage enforces
that B’s output from the polynomial evaluation be consistent with the non-malleable commitment
that B received. That is, it ensures that B will reject unless he receives Q′(w′) from the (C, B)-
polynomial evaluation (i.e., πB = Q′(w′)). On the other hand, the validation stage also enforces

33This is the reason that an additional commitment to the polynomial Q is included in the pre-key exchange. That
is, were we to augment the polynomial evaluation by having the parties include their transcripts of the non-malleable
commitment to Q and w (rather than just by a commitment to Q), then knowledge of w would be required for
running A’s role in the pre-key exchange. The argument for non-malleability here would then fall.

34As we have mentioned, in case (Q′, w′) = (Q, w), we can show that party B rejects with overwhelming probability,
unless πA = πB . This is because the validation stage essentially enforces that πB = Q′(w′), and therefore in case
(Q′, w′) = (Q, w) it follows that πB = Q′(w′) = Q(w) = πA. Thus, in this proof sketch, we only consider the case
that (Q′, w′) 6= (Q, w).

42

that the polynomial input by C into the (C, B)-polynomial evaluation is Q′ (i.e., QC = Q′). Thus,
the respective inputs of C and B into the (C, B)-polynomial evaluation are Q′ and w, and so B
receives Q′(w) as the output of this evaluation (by the evaluation’s correctness).35 Therefore, if
B accepts, it must be the case that Q′(w′) = Q′(w), which implies that w′ = w (because Q′ is a
non-constant linear polynomial). Letting bad denote the event in the lemma’s claim, we get

Pr[bad] = Pr[bad & w′=w] + Pr[bad & w′ 6=w]
≤ Pr[bad & w′=w & Q′=Q] + Pr[Case 2 & w′=w & Q′ 6=Q] + Pr[decB =acc & w′ 6=w]
≤ µ(n) + (ε + µ(n)) + µ(n)

Referring to the augmented definition of security, we note that in this synchronization case, the
session-key challenge received by C in the augmented setting is of no consequence. This is because
C completes its non-malleable commitment to B before A terminates, and so the value of its
commitment is determined before C receives the session-key challenge. Therefore, C’s success in
generating a related commitment is independent of the session-key challenge. Furthermore, as is
shown in the full proof, if C has failed in generating a related commitment, then B rejects with
overwhelming probability even if C is later given both Q and w (and not merely the session-key
k2(Q(w))).

The full proof of Lemma 4.7, which amounts to a careful implementation of the above proof sketch,
can be found in Section 6.2.

4.5 Simulating the Stand-Alone (A, C) Execution

In this section, we show that C’s view, when interacting with A only, can be simulated by a machine
that interacts with nobody.36 Actually, we show that the joint distribution of C’s simulated view
along with the password and a random string is (1 − O(ε))-indistinguishable from C’s real view
along with the password and A’s output session-key.

Theorem 4.8 For every ppt channel C ′ interacting with A only, there exists a non-interactive
machine C ′′, such that

{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
n,D,σ

2ε≡ {
w, Un, output(C ′′(σ))

}
n,D,σ

where Q is a random non-constant linear polynomial, D ⊆ {0, 1}n is any ppt samplable dictionary,
w ∈R D, and ε = 1

|D| .

Proof Sketch: First, notice that it is enough to prove that for every ppt channel C ′,
{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
2ε≡

{
w,Un, output(C ′A(Q,w̃)(σ))

}
(13)

where w, w̃ ∈R D are independently chosen passwords from D. In order to see that Eq. (13)
implies Theorem 4.8, define the following non-interactive machine C ′′. Machine C ′′ chooses a

35Correctness, even in the concurrent setting, is implied by security in the stand-alone setting, because the latter
holds even when the adversary knows the private input of the honest party, which in turn allows it to emulate the
concurrent execution.

36Recall that in the next subsection, we show that the (C, B)-execution can be simulated by C itself, while in-
teracting with A. Thus put together, these two simulations provide the core of the proof of security of the entire
protocol (for active adversaries). Our choice of the current order of the two simulations is due to the fact that we
use elements in the analysis of the current simulation in the analysis of the next simulation.

43

random (linear, non-constant) polynomial Q and a “password” w̃ ∈R D. Then, C ′′ perfectly em-
ulates an execution of C ′A(Q,w̃)(σ) by playing A’s role (C ′′ can do this because it knows Q and
w̃). Finally, C ′′ outputs whatever C ′ does. The resulting output of C ′′ is distributed exactly
like output(C ′A(Q,w̃)(σ)). Thus, it is enough to prove Eq. (13). Now, notice that the distribu-
tions {w, Un, output(C ′A(Q,w̃)(σ))} and {w̃, Un, output(C ′A(Q,w)(σ))} are equivalent. We therefore
proceed by proving that

{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
2ε≡

{
w̃, Un, output(C ′A(Q,w)(σ))

}
(14)

First we show that at the conclusion of the polynomial evaluation, with respect to C ′’s view, the
pair (w, Q(w)) is (1−ε)-indistinguishable from (w̃, Un). The fact that w is indistinguishable from w̃
follows from the fact that in the first two stages of the protocol, A uses w only in the non-malleable
commitment. Thus, by the hiding property of the non-malleable commitment scheme, w remains
indistinguishable from w̃. It is therefore enough to show that after the polynomial evaluation the
value of Q(w) is (1− ε)-pseudorandom, with respect to C ′’s view.

Consider what C ′ can learn about Q(w) from the first two stages of the protocol (i.e., until the
end of the polynomial evaluation). Due to the hiding property of the two commitment schemes in
use, the two commitment transcripts reveal nothing of Q or w, and so the only place that C ′ can
learn something is from the polynomial evaluation itself. The security of the polynomial evaluation
implies that the receiver (here played by C ′) can learn nothing beyond the value of Q(·) at a
single point selected by C ′. We denote this point by wC . Thus, in the case that wC 6= w, given
Q(wC), the values Q(w) and Un are statistically close (recall that Q is a random, non-constant,
linear polynomial and so we have “almost” pairwise independence). However, since w is uniformly
distributed in D (and C ′ learned nothing about it so far), the probability that wC = w is at most
ε. This means that at the conclusion of the polynomial evaluation, with respect to C ′’s view, Q(w)
can be distinguished from Un with probability at most negligibly greater than ε.

We have shown that after the first two stages, with respect to C ′’s view, (w, Q(w)) is (1 − ε)-
indistinguishable from (w̃, Un). We now consider the messages sent by A in the remaining two
stages. Recall that A sends nothing in the last (i.e., fourth) stage, whereas the only messages
sent by A in the third stage are the value y = f2n(Q(w)), messages it sends as prover in the
zero-knowledge proof, and a MAC of the entire message transcript keyed by k1(Q(w)). The zero-
knowledge proof reveals nothing because it can be simulated by C ′ itself (in the standard manner,
since here we are considering a stand-alone setting between A and C ′). Thus, it remains to deal
with y and the MAC-value. These are dealt with by showing that, even when given the value
y = f2n(Q(w)), the MAC-key k1(Q(w)), and the view of C ′ at the end of Stage 2, the value
(w,Q(w)) is (1− 2ε)-indistinguishable from (w̃, Un). The latter implies Eq. (14), and is proven by
relying on the following two facts: (1) as established above, {w,Q(w)} is (1− ε)-indistinguishable
from {w̃, Un}, with respect to C ′’s view at the end of Stage 2 of the protocol, and (2) the string
y = f2n(Q(w)) along with the MAC-key k1(Q(w)) and the session-key k2(Q(w)) constitutes a
pseudorandom generator. This concludes the proof of the theorem.

The full proof of Theorem 4.8, which amounts to a careful implementation of the above proof
sketch, can be found in Section 7.

We note that since in this theorem we consider a stand-alone execution between A and C ′, the
analogous claim for the augmented definition of security holds as well. This is because the session-
key challenge is only given to C ′ after the entire execution has terminated. Therefore, it is equivalent
to giving the session-key to the distinguisher. However, the distinguisher receives the actual session-
key anyway, and can thus generate the challenge by itself.

44

4.6 Simulating the (C, B) Execution

In this section, we show how the entire (C, B) execution can be simulated (by C while interacting
with A). That is, we consider the concurrent setting in which C interacts with both A and B. We
claim that a channel interacting only with A can simulate C’s view in the concurrent setting with
A and B, so that C’s simulated view is (1−O(ε))-indistinguishable from its view in an execution
with A and B. In fact, (1 − O(ε))-indistinguishability holds also for C’s view combined with the
password and the session-key. That is,

Theorem 4.9 (simulating the (C, B) execution): For every ppt channel C interacting with A and
B, there exists a ppt channel C ′ interacting only with A, such that

{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
n,D,σ

5ε≡
{
w, k2(Q(w)), output(CA(Q,w),B(w)(σ))

}
n,D,σ

where Q is a random non-constant linear polynomial, D ⊆ {0, 1}n is any ppt samplable dictionary,
w ∈R D, and ε = 1

|D| .

Proof Outline: The theorem is proved in two steps. Conceptually, simulation of the (C, B)
execution is demonstrated by separately showing how the first three stages of the (C,B) execution
(i.e., everything except for B’s accept/reject bit) can be simulated, and then showing how B’s
accept/reject bit itself can also be simulated. In order to implement this two-step process, we
consider a modified party B6dec that behaves exactly as B, except that it does not output an
accept/reject bit. Theorem 4.9 is obtained by combining the following Lemmas 4.10 and 4.11,
which refer to the first and second steps, respectively. 2

Further details on the proof of Theorem 4.9: As outlined above, Theorem 4.9 is obtained
by combining Lemmas 4.10 and 4.11, which are stated in the following Subsections 4.6.1 and 4.6.2,
respectively. In these subsections we also provide sketches for the proofs of these lemmas. The full
proofs, to be found in Section 8, are merely careful implementations of the corresponding proof
sketches.

4.6.1 Step 1: Simulating the (C,B 6dec) execution

We start by showing that C’s interaction with A and the modified B (i.e., B 6dec, which has no public
accept/reject output), can be simulated by a machine that only interacts with A.

Lemma 4.10 Let C̃ be a ppt channel interacting with A and a modified party B 6dec who does not
output an accept/reject bit. Then, there exists a ppt channel C ′ interacting with A only, such that

{
w, k2(Q(w)), output(C ′A(Q,w))

}
c≡

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w))

}

Proof Sketch: Since k2(Q(w)) is a polynomial-time function of Q(w), it suffices to prove the
following equation:

{
w, Q(w), output(C ′A(Q,w))

}
c≡

{
w, Q(w), output(C̃A(Q,w),B 6dec(w))

}
(15)

First notice that the only messages sent by B6dec in the validation stage are as an honest verifier
in the zero-knowledge proof. These can therefore be easily simulated. Next, observe that in the

45

remaining first two stages, the only place that B6dec uses w is in the (C̃, B 6dec) polynomial-evaluation.
However, by the definition of the polynomial evaluation functionality, C̃ receives no output from
this evaluation and thus nothing is revealed about w. This is trivial in a stand-alone setting; here we
claim that it also holds in our concurrent setting. Formally, we show that if B6dec were to use some
fixed w′ ∈ D instead of the password w, then this is indistinguishable to C̃ (when also interacting
concurrently with A). That is, we show that for every ppt C̃,

{
w, Q(w), output(C̃A(Q,w),B 6dec(w))

}
c≡

{
w,Q(w), output(C̃A(Q,w),B 6dec(w

′))
}

(16)

where w ∈R D is a random password and w′ ∈ D is fixed. This is shown by reducing C̃’s concurrent
execution with A and B 6dec to a stand-alone two-party setting between C̃ and B6dec only.37 The
reduction is obtained by providing C̃ with the password w and the polynomial Q, which enables
C̃ to perfectly emulate the entire (A, C̃) execution. As a result of this emulation, we are left with
a stand-alone setting between C̃ and B 6dec in which B6dec inputs either w or w′ into the polynomial
evaluation (and C̃ knows both w and w′). In this stand-alone setting, the security of the polynomial
evaluation guarantees that C̃ can distinguish the input cases with at most negligible probability,
even when given both w and w′ (as well as Q). Eq. (16) follows.

We have established that C̃ cannot distinguish the case that B6dec uses w from the case that
B6dec uses w′. This suggests to define the channel C ′ as follows: C ′ chooses an arbitrary w′ ∈ D
and emulates the C̃A(Q,w),B 6dec(w

′) setting for C̃, while interacting with A(Q,w) (and using w′ in the
emulation of B 6dec(w′)). At the end of the interaction, C ′ outputs whatever C̃ does. Channel C̃’s
view in this simulation is indistinguishable from in a real execution with A and B6dec, establishing
Eq. (15) and therefore proving the lemma.

We note that the above argument is unchanged when considering the augmented definition of
security. This is true because Eq. (16) holds even if C̃ is explicitly given both Q and w (in which
case C̃ can generate the session-key challenge by itself).

4.6.2 Step 2: Simulating B’s decision bit

We now show how the accept/reject bit of B can be simulated (while interacting with A and B 6dec).
This modification of B to B6dec is straightforward when considering Definition 2.4. However, for
the augmented definition (Def. 2.5) we must also say how the session-key challenge is generated
(because by the definition of the augmented real-model, this value depends on whether or not
the first party concluding accepts or rejects). Now, if A concludes first, then nothing is changed.
However, if B 6dec concludes first, then we set the challenge session-key to always equal ⊥. We now
proceed to the simulation:

Lemma 4.11 Let B6dec be a party who does not output an accept/reject bit. Then, for every ppt
channel C interacting with A and B, there exists a ppt channel C̃ interacting with A and B6dec,
such that

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w))

}
5ε≡

{
w, k2(Q(w)), output(CA(Q,w),B(w))

}

37Indeed, the reader may consider this reduction (i.e., removing the (A, C̃) execution) odd, given that our final
goal here is to remove the (C̃, B 6dec) execution (i.e., reduce C̃’s concurrent execution with A and B 6dec to a stand-alone
two-party setting between C̃ and A). Still, such a reduction enables us to establish Eq. (16), and once Eq. (16) is
established we proceed to remove the (C̃, B 6dec) execution.

46

Proof Sketch: The proof of this claim relies heavily on the security of the MAC-value sent in
the validation stage of the protocol. Recall that A sends a MAC of her entire session-transcript
using k1(πA) = k1(Q(w)) as the key. Furthermore, B verifies the MAC value that it receives using
the key k1(πB), where πB is B’s output from the polynomial evaluation. Intuitively, the MAC
ensures that, except with probability O(ε), if C was not reliable, then B will detect its interference
and will therefore reject. On the other hand, if C was reliable then B will surely accept. Loosely
speaking, this means that C can learn “at most an O(ε) fraction of a bit of information” from B’s
accept/reject bit.

We begin by proving the security of the MAC value when keyed by k1(πA). This is an important
step in proving Lemma 4.11. We note that we need to show that the MAC is secure only before
B outputs its accept/reject bit. Thus, we consider a scenario in which C interacts with A and
the modified party B6dec. The security of the MAC is formally stated in the following claim. (For
simplicity, we consider an implementation of a MAC by a pseudorandom function. However, our
proof can be extended to any secure implementation of a MAC.)

Claim 4.12 Let C be an arbitrary ppt channel interacting with A and a modified party B6dec as in
Lemma 4.11, and let tA and tB denote the transcripts from the (A,C) and (C, B6dec) executions,
respectively. Then, if tA 6= tB, it holds that the value MACk1(πA)(tB) is (1 − 2ε)-pseudorandom
with respect to C’s view. That is, for every probabilistic polynomial-time distinguisher D, every
dictionary D ⊆ {0, 1}n, every auxiliary-input σ and all sufficiently large n’s

∣∣∣Pr[D(MACk1(πA)(tB), CA(Q,w),B 6dec(w)) = 1 & tA 6= tB]

−Pr[D(Un, CA(Q,w),B 6dec(w)) = 1 & tA 6= tB]
∣∣∣ < 2ε + µ(n)

Proof Sketch: We first observe that we can ignore the entire (C, B6dec) execution in proving
the claim. A similar claim has already been shown in Lemma 4.10 (above). Loosely speaking,
Eq. (15) in the proof of Lemma 4.10 states that C’s view is essentially the same when interacting
with A and B 6dec or when interacting with A alone. Actually, Eq. (15) asserts that these two
views are indistinguishable also when considered in conjunction with (w, Q(w)). Since k1(·) is a
polynomial-time function, it follows that these two views are indistinguishable also when considered
in conjunction with (w, k1(Q(w)), where k1(Q(w)) is the MAC-key.

We now analyze the security of the MAC-key in a stand-alone setting between A and C. This
proof is very similar to the proof of Theorem 4.8 (there k2(Q(w)) is shown to be (1 − O(ε))-
pseudorandom; here a similar result is needed with respect to k1(Q(w))). As in Theorem 4.8, we
first establish that at the conclusion of the polynomial evaluation, the value Q(w) is (1 − O(ε))-
pseudorandom to C. Next, recall that the only messages sent by A in the third stage of the
protocol are y = f2n(Q(w)), messages from a zero-knowledge proof and a MAC of the message
transcript. The zero-knowledge proof can be simulated and so it reveals nothing. Then, since
G(s) = (f2n(s), k1(s)) is a pseudorandom generator and Q(w) is (1 − O(ε))-pseudorandom at the
end of Stage 2, it holds that the MAC-key k1(Q(w)) remains (1−O(ε))-pseudorandom even given
y = f2n(Q(w)).

Having established that the MAC-key is (1− O(ε))-pseudorandom (with respect to C’s view),
we conclude by showing that this implies that the probability that C successfully forges the MAC
is at most O(ε)+µ(n). Now, since k1(Q(w)) is (1−O(ε))-pseudorandom, a pseudorandom function
keyed by k1(Q(w)) is also (1 − O(ε))-pseudorandom. Recall that the last message sent by A
is MACk1(Q(w))(tA) where tA is A’s message transcript. Therefore, by the properties of a (1 −
O(ε))-pseudorandom function, for every t 6= tA that C can produce, the value MACk1(Q(w))(t) is

47

(1 − O(ε))-pseudorandom given C’s view. Since tB is part of C’s view, it follows that the value
MACk1(Q(w))(tB) is (1−O(ε))-pseudorandom given C’s view. This concludes the proof of the claim.

We note that the above also holds for the augmented definition of security. This is because
the MAC-key k1(Q(w)) remains (1−O(ε))-pseudorandom even given both y = f2n(Q(w)) and the
session-key k2(Q(w)). Therefore, even if the session-key challenge equals k2(Q(w)), this cannot
help C generate a correct MAC. Given that this is the case, the rest of the proof also follows for
the augmented definition.

We now use Claim 4.12 and Theorem 4.5 (the key-match property) to show that the probability
that B accepts in executions for which C is not reliable is at most O(ε). (Recall that C is reliable
in a particular execution if it acts like a passive (eavesdropping) adversary in that execution.)

Proposition 4.13 For every ppt channel C,

Pr[decB = acc & reliableC = false] < 5ε + µ(n)

Proof Sketch: We show this proposition by combining the following facts:
• Theorem 4.5 states that the probability that B accepts and πA 6= πB is at most negligibly

greater than 3ε.

• Let tA and tB be the (A,C) and (C, B) message-transcripts, respectively. Then, Claim 4.12
states that if tA 6= tB, then MACk1(πA)(tB) is (1− 2ε)-pseudorandom with respect to C’s view.

• B only accepts if he receives MACk1(πB)(tB) (i.e., a MAC value keyed by k1(πB)) in the last
step of the protocol.

Now, consider the case that C is not reliable and thus by definition tA 6= tB. Then, if πA = πB we
have that, by the security of the MAC, party B accepts with probability at most negligibly more
than 2ε. On the other hand, if πA 6= πB, then by the key-match property, party B accepts with
probability at most 3ε (irrespective of the MAC). Therefore, the probability that B accepts and
tA 6= tB is at most negligibly greater than 5ε.

Given Proposition 4.13, we can complete the proof of Lemma 4.11. First, we describe the adversary
C̃ (who interacts with A and B 6dec). Channel C̃ emulates an execution of CA(Q,w),B(w), while
interacting with A and B6dec. This emulation is “easy” for C̃, except for the accept/reject decision
bit of B (since this is the only difference between its execution with A and B6dec, and an execution
with A and B). Therefore, at the conclusion of the (C, B 6dec) execution, C̃ attempts to guess B’s
accept/reject decision-bit (which is not given to C̃ but which C does expect to see) and outputs
whatever C does. Channel C̃’s guess for B’s decision-bit is according to the natural rule (suggested
by the above discussion): B accepts if and only if C was reliable. We stress that C̃ can easily
determine whether or not C was reliable (in the current execution). To establish the approximate-
correctness of the above rule, observe that, on one hand, if C is reliable then B always accepts
(and so, in this case, C̃’s guess is always correct). On the other hand, if C was not reliable, then
B accepts with probability at most 5ε + µ(n). Therefore, C̃ is wrong in its guess with probability
at most 5ε + µ(n), and the difference in C’s view in the case that it really receives B’s output bit
and the case it receives C̃’s guess, is at most negligibly greater than 5ε.

We note this simulation by C̃ is also easily carried out under the augmented definition. This
is the case because if C was reliable, then A must have finished first, and so there is no differ-
ence between the challenge session-key received by C̃ in C̃A(Q,w),B 6dec(w) and that received by C in

48

CA(Q,w),B(w). On the other hand, if B6dec finished first in its execution with C̃, then C must have
been not reliable in the emulation of CA(Q,w),B(w) by C̃. Therefore, except with probability 5ε, the
challenge session-key received by C would equal ⊥, which is the same as what C̃ receives in the
modified execution with B6dec.

4.7 The Security of Protocol 3.2 for Arbitrary Adversaries

The fact that Protocol 3.2 satisfies Definition 2.4 (i.e., Theorem 3.3) follows by combining the
passive adversary case (i.e., Theorem 4.1) and the active adversary case (i.e., Theorem 4.14, below).

Theorem 4.14 (active executions): Protocol 3.2 satisfies Condition 2 in Definition 2.4. That is,
for every ppt real-model channel C, there exists a ppt ideal-model channel Ĉ, such that

{
idealĈ(D, σ)

}
n,D,σ

12ε≡ {realC(D, σ)}n,D,σ

where D ⊆ {0, 1}n is any ppt samplable dictionary, σ ∈ {0, 1}poly(n) is the auxiliary input for the
adversary, and ε = 1

|D| .

In this section, we present a full proof of Theorem 4.14. Our main tools are the simulations provided
by Theorems 4.8 and 4.9 (presented in Sections 4.5 and 4.6, respectively). In addition, we make an
essential use of Proposition 4.13 (of Section 4.6), and a marginal use (i.e., in order to save an O(ε)
term) of Proposition 4.3 (of Section 4.3).

Proof: We begin by describing the ideal-model channel Ĉ. Adversary Ĉ is derived from the
transformations of Theorems 4.8 and 4.9. That is, combining these theorems together, we have
that for every ppt real-model channel, there exists a non-interactive machine C ′′ such that

{
w, Un, output(C ′′(σ))

} 7ε≡
{
w, k2(Q(w)), output(CA(Q,w),B(w)(σ))

}
(17)

Next, we define the ideal-model channel Ĉ as follows: Ĉ first invokes the non-interactive machine
C ′′ guaranteed by Eq. (17). When Ĉ receives the output of C ′′ (which contains C’s view and in
particular B’s accept/reject bit), Ĉ sets the value of b (the bit sent by it to the trusted party) as
follows:
• If B accepted in the view output by C ′′, then Ĉ sends b = 1 to the trusted party.

• If B rejected in this view, then Ĉ sends b = 0 to the trusted party.
(Recall that upon receiving b = 1, the trusted party hands the same uniformly distributed key to A
and B. On the other hand, upon receiving b = 0, the trusted party hands a uniformly distributed
key to A, and B receives ⊥.) Finally, Ĉ halts and outputs the output of C ′′.

Before proceeding, we remark on an important property regarding the simulated view of C that
is output by C ′′. In this view, B accepts if and only if C was reliable. This is because this is the way
that B’s accept/reject bit is simulated by C̃, as described at the end of the proof of Lemma 4.11.
We will use this property below.

We now show that the combined input/output distributions in the real and ideal models are at
most negligibly greater than 12ε apart. By Eq. (17) and the definition of Ĉ, we have that

{
w, Un, output(Ĉ)

}
7ε≡

{
w, k2(Q(w)), output(CA(Q,w),B(w))

}
(18)

49

This seems very close to proving the theorem (the first distribution is “almost” the ideal-model
distribution and the second distribution is “almost” the real-model distribution), where in both
cases the only thing missing is B’s local output (which may or may not equal A’s local output).
included). It remains to show that the distributions are still (1−O(ε))-indistinguishable even when
B’s output is included. Loosely speaking, this is shown by separately considering the cases that
C acts reliably and unreliably. When C is reliable, then the ideal and real distributions are
computationally indistinguishable (by Proposition 4.3). On the other hand, when C is not reliable,
then B rejects with probability at least 1− 5ε, in which case B’s output is defined as ⊥.

Formally, let D be any ppt distinguisher who attempts to distinguish between the ideal and
real distributions. We separately analyze the distance between the distributions when B accepts
and when B rejects. When referring to B’s decision (i.e., decB), within the context of idealĈ , we
mean B’s decision as included in the emulated view of C (which is part of the output of Ĉ). (Note
that by the construction of Ĉ, it holds that B’s decision in the emulated view matches the output
of B in the ideal-model; i.e., decB = rej iff the output of B in the ideal-model is ⊥.) We begin with
the case that B rejects:

∣∣Pr[D(idealĈ(D, σ)) = 1 & decB = rej]− Pr[D(realC(D, σ)) = 1 & decB = rej]
∣∣

=
∣∣∣Prw

[
D

(
w, Un,⊥, output(Ĉ)

)
= 1 & decB = rej

]

− PrQ,w

[
D

(
w, k2(Q(w)),⊥, output(CA(Q,w),B(w))

)
= 1 & decB = rej

]∣∣∣

The above follows from the protocol definition that states that when B rejects it outputs ⊥, and
from the construction of the ideal-model adversary Ĉ who sends b = 0 to the trusted party (causing
B’s output to be ⊥) in the case that B rejects in the view output by C ′′. Noting that C’s view
includes B’s accept/reject decision bit (and thus implicitly B’s output of ⊥ in the case that B
rejects), by Eq. (18) we have that

∣∣Pr[D(idealĈ(D, σ)) = 1 & decB = rej]
−Pr[D(realC(D, σ)) = 1 & decB = rej]| < 7ε + µ(n) (19)

We now analyze the case that B accepts. Here, we further break down the events and separately
consider the case that C is reliable and C is not reliable. (Recall that in the ideal distribution, the
event of C being reliable or not refers to its behavior as implicit in the view output by C ′′ for Ĉ.)
Starting with the subcase in which C is reliable, we have:
∣∣Pr[D(idealĈ(D, σ)) = 1 & decB = acc & reliableC = true]

− Pr[D(realC(D, σ)) = 1 & decB = acc & reliableC = true]|
=

∣∣∣Prw

[
D

(
w,Un, Un, output(Ĉ)

)
= 1 & decB = acc & reliableC = true

]

− PrQ,w

[
D

(
w, k2(Q(w)), k2(Q(w)), output(CA(Q,w),B(w))

)
= 1 & decB = acc & reliableC = true

]∣∣∣

Noting that when C is reliable, B always accepts (and so its real-model and ideal-model outputs
are always k2(Q(w)) and Un respectively), we have that the above difference equals

∣∣Pr[D(realC(D, σ)) = 1 & reliableC = true]− Pr[D(idealĈ(D, σ)) = 1 & reliableC = true]
∣∣

By Proposition 4.3 this difference is at most negligible. We now consider the case in which B
accepts and C is not reliable.

∣∣Pr[D(idealĈ(D, σ)) = 1 & decB = acc & reliableC = false]
− Pr[D(realC(D, σ)) = 1 & decB = acc & reliableC = false]|

50

By Proposition 4.13 we have that in a real execution, Pr[decB = acc & reliableC = false] < 5ε+µ(n).
In contrast, in an ideal execution, Pr[decB = acc & reliableC = false] = 0. This is due to the fact
that in the simulated transcript output by C ′′, party B accepts if and only if C was reliable (as
mentioned above). Therefore, we have that the above difference is at most negligibly greater than
5ε. Putting these together, we have that

∣∣Pr[D(idealĈ(D, σ)) = 1 & decB = acc]
−Pr[D(realC(D, σ)) = 1 & decB = acc]| < 5ε + µ(n) (20)

Combining Equations (19) and (20) we conclude that,
∣∣Pr[D(idealĈ(D, σ)) = 1]− Pr[D(realC(D, σ)) = 1]

∣∣ < 12ε + µ(n)

and the theorem follows.

5 Full Proof of Security for Passive Adversaries

In this section, we present the proof of Lemma 4.2, used for proving the “passive adversaries”
requirement of Definition 2.4. Recall that this lemma relates to a passive channel C who can only
eavesdrop on protocol executions between honest parties A and B. This means that C receives the
transcript of messages sent by A and B and tries to “learn something” based on this transcript
alone.

Lemma 5.1 (Lemma 4.2 – restated): For every passive ppt channel C,
{
w, k2(Q(w)), output(CA(Q,w),B(w))

}
c≡

{
w,Un, output(CA(Q,w̃),B(w̃))

}

where Q is a random non-constant linear polynomial, and w and w̃ are independently and uniformly
distributed in D.

Proof: As we have mentioned, since C is passive, it merely receives a message transcript of a
two-party protocol. We stress that there are no concurrent adversarial executions in this case, but
rather merely a transcript of a standard stand-alone protocol execution between two honest parties.
The issue is merely what can a third party (i.e., C) learn from such a transcript. We answer this
question by relying on the (stand-alone) security of the different modules in our protocol. We start
by presenting notation for transcripts of executions of our protocol.

The message-transcript of an execution of our protocol is a function of the inputs Q and w, and
the respective random coins of A and B, denoted rA and rB. We denote the message transcript
of the first two stages of the protocol by t2(Q, w, rA, rB). Furthermore, we denote by T2(Q,w)
a random variable that assumes values of t2(Q,w, rA, rB) where rA and rB are randomly chosen.
(Note that the security parameter n, and thus the lengths of Q,w,rA and rB are implicit in all these
notations.)

We begin by showing that the probability ensemble {T2(Q1, w1)}Q1,Q2,w1,w2 is computationally
indistinguishable from {T2(Q2, w2)}Q1,Q2,w1,w2 .

38 This is proved in the following claim, which is
then used to establish the lemma (which refers to the entire protocol execution, rather than just
to the first two stages as shown in the claim).

38Notice that it is not true that the ensembles {T (Q1, w1)}Q1,Q2,w1,w2 and {T (Q2, w2)}Q1,Q2,w1,w2 are indistin-
guishable, where T (Q, w) is a random variable assuming message transcripts for the entire protocol (including the
validation stage). This is because the string y = f2n(Q(w)) is sent during the validation stage. Thus, given (Q1, w1), a
distinguisher may compare f2n(Q1(w1)) to the y-value of the transcript, and determine whether or not the transcript
is based on (Q1, w1).

51

Claim 5.2 The probability ensemble {T2(Q1, w1)}Q1,Q2,w1,w2 is computationally indistinguishable
from {T2(Q2, w2)}Q1,Q2,w1,w2. That is, for every non-uniform ppt distinguisher D, every polynomial
p(·) and all sufficiently large pairs (Q1, w1) and (Q2, w2),

|Pr[D(t2(Q1, w1, rA, rB)) = 1]− Pr[D(t2(Q2, w2, rA, rB)) = 1]| < 1
p(n)

where rA and rB are uniformly chosen strings.

Proof: The proof is based on the security of the different modules in the protocol.

The Commitments: Due to the hiding property of string commitments, a non-malleable commit-
ment to (Q1, w1) is indistinguishable from one to (Q2, w2), and likewise an ordinary commitment
to Q1 is indistinguishable from one to Q2.

The Polynomial Evaluation: The inputs to the polynomial evaluation are Q,w and Commit(Q).
Denote by TP (Q,w), a random variable assuming transcripts for this evaluation (when the parties
A and B use uniformly distributed random tapes). We claim that for all sufficiently large values
of Q1, Q2, w1, w2, we have that {TP (Q1, w1)} and {TP (Q2, w2)} are indistinguishable. This can be
derived from the following two facts (and is based on the security of the polynomial evaluation that
implies that A learns nothing and that B learns only Q(w)):

1. For all sufficiently large non-constant, linear polynomials Q, passwords w ∈ D and strings
x ∈ {0, 1}n, we have that

{TP (Q,w)}Q,w,x
c≡ {TP (Q, x)}Q,w,x (21)

This is based directly on the fact that A learns nothing of B’s input (which is either w
or x) from the evaluation. Therefore, given her message transcript, A must not be able to
distinguish the case that B used w from the case that B used x. Eq. (21) follows.

2. For all sufficiently large non-constant, linear polynomials Q1, Q2 and strings x ∈ {0, 1}n such
that Q1(x) = Q2(x), it holds that

{TP (Q1, x)}Q1,Q2,x
c≡ {TP (Q2, x)}Q1,Q2,x (22)

This is because B obtains only Q(x) from the evaluation, where A inputs Q ∈ {Q1, Q2}.
Since Q1(x) = Q2(x), party B cannot distinguish the case that A inputs Q1 or Q2 into the
evaluation (otherwise he learns more than just Q(x)). Eq. (22) follows.

Now, for every two non-constant polynomials Q1 and Q2, there exists a third polynomial Q3 and
values x1 and x2 such that Q1(x1) = Q3(x1) and Q2(x2) = Q3(x2). Therefore, we have that for all
sufficiently large non-constant linear polynomials Q1, Q2 and passwords w1, w2 ∈ D

{TP (Q1, w1)} c≡ {TP (Q1, x1)}
c≡ {TP (Q3, x1)}
c≡ {TP (Q3, x2)}
c≡ {TP (Q2, x2)}
c≡ {TP (Q2, w2)}

52

where Q3, x1, x2 are as described above (the ensembles in the above equations are indexed by
(Q1, Q2, Q3, w1, w2, x1, x2)). The first, third and fifth “

c≡” are due to Eq. (21) and the second and
fourth is from Eq. (22). We therefore have that {TP (Q1, w1)} c≡ {TP (Q2, w2)}. Combining this
with what we have shown regarding the commitments, the claim follows.

Loosely speaking, the above claim shows that the transcript of the first two stages of the protocol
reveals nothing significant about the polynomial or password used in the execution. Recalling that
no messages are sent in the last (fourth) stage, it remains to analyze the additional messages sent
in the third stage of the protocol. Recall that the third stage (validation) consists of A sending
y = f2n(Q(w)), a zero-knowledge proof, and a MAC of the session-transcript keyed by k1(Q(w)). To
simplify the exposition, we will assume that A sends the MAC-key itself, rather than the MAC-value
(which can be computed by C from the MAC-key and the visible session-transcript). Intuitively, the
zero-knowledge proof reveals nothing, and the session-key k2(Q(w)) remains pseudorandom even
given f2n(Q(w)) and k1(Q(w)) because G(Q(w)) def=

(
f2n(Q(w)), k1(Q(w)), k2(Q(w))

)
constitutes

a pseudorandom generator. Furthermore, the password w is “masked” by Q, and therefore remains
secret, even given Q(w) itself. Details follow.

By the definition of zero-knowledge, there exists a simulator that generates proof-transcripts
indistinguishable from real proofs. Thus, we may ignore this part of the validation stage for the rest
of the proof (because, using the simulator, C may generate this part by itself). Thus, we may assume
that the entire session-transcript consists of T2(Q,w) along with the pair

(
f2n(Q(w)), k1(Q(w))

)
.

From here on, we denote by {T2(Q,w), Q, w)}n,D (and variations of this), a probability ensemble
where Q and w are chosen randomly and then the transcript T2 is generated based on this Q and w.
(Previously, the ensembles considered here were indexed by Q and w; from here on, the ensembles
are indexed by n and D.) Thus, in order to complete the proof of the lemma, it remains to show
that for randomly chosen values Q1, Q2, w1, w2,

{T2(Q1, w1), f2n(Q1(w1)), k1(Q1(w1)), k2(Q1(w1)), w1}n,D
c≡ {T2(Q2, w2), f2n(Q2(w2)), k1(Q2(w2)), Un, w1}n,D (23)

Now, using Claim 5.2 and the fact that for a random Q1, the value Q1(w1) is uniformly distributed
in {0, 1}n (for every w1), we have

{T2(Q1, w1), Q1(w1), w1}n,D
c≡ {T2(Q2, w2), Q1(w1), w1}n,D

c≡ {T2(Q2, w2), Un, w1}n,D (24)

(Notice that Q1 is independent of T2(Q2, w2).) This then implies that

{T2(Q1, w1), f2n(Q1(w1)), k1(Q1(w1)), k2(Q1(w1)), w1}n,D
c≡ {T2(Q2, w2), f2n(Un), k1(Un), k2(Un), w1}n,D
c≡ {T2(Q2, w2), f2n(U (1)

n), k1(U (1)
n), U (2)

n , w1}n,D (25)

where the last “
c≡” is by pseudorandomness of the generator G(s) =

(
f2n(s), k1(s), k2(s)

)
, and U

(1)
n

and U
(2)
n denote independent uniform distributions over n-bit strings. Using Eq. (24), we have

{T2(Q2, w2), Un}n,D
c≡ {T2(Q1, w1), Q1(w1)}n,D ≡ {T2(Q2, w2), Q2(w2)}n,D

and since w1 ∈R D independently of (Q2, w2), it holds that

{T2(Q2, w2), U (1)
n , w1}n,D

c≡ {T2(Q2, w2), Q2(w2), w1}n,D

53

This, in turn, implies that

{T2(Q2, w2), f2n(U (1)
n), k1(U (1)

n), U (2)
n , w1}n,D

c≡ {T2(Q2, w2), f2n(Q2(w2)), k1(Q2(w2)), U (2)
n , w1}n,D

(26)
Combining Equations (25) and (26), we obtain Eq. (23) completing the proof of the lemma (by
replacing w1 with w and w2 with w̃ in Eq. (23), this is the same as the lemma statement).

6 Full Proof of the Key-Match Property

The key-match property captured in Theorem 4.5 states that the probability that A and B both
accept, yet have different pre-keys (i.e., πA 6= πB) is at most O(ε). Recall that πA

def= Q(w) and
that πB is B’s output from the polynomial evaluation. We prove this theorem by considering two
complementary schedulings of the concurrent executions. We show that for each scheduling, the
probability that B accepts and πA 6= πB is at most O(ε). (In fact, in the first scheduling, B accepts
with probability at most O(ε), irrespective of whether or not πA = πB.)

6.1 Proof of Lemma 4.6 (The Unsynchronized Case)

The proof of Lemma 4.6 will involve considering a variety of different settings. Specifically, we will
consider the probability that B accepts when interacting with C, which in turn interacts with a
pair of machines that are not necessarily A and B. For sake of clarity, we introduce the notation
dec(CA′,B′) that means the decision of B′ (which is public and known to C) when interacting with
C that interacts concurrently also with A′.

Lemma 6.1 (Lemma 4.6 – restated; Case 1 – unsynchronized): Let C be a ppt channel and define
Case 1 to be a scheduling of the protocol execution by which C completes the polynomial evaluation
with A before concluding the non-malleable commitment with B. Then, for every polynomial p(·)
and all sufficiently large n’s

Pr[dec(CA,B) = acc & Case 1] < 2ε +
1

p(n)

Proof: The proof of this lemma is the most complex proof in this paper. It proceeds by reducing the
concurrent setting to a two-party stand-alone setting. However, before performing this reduction,
we “remove” the zero-knowledge proofs from the protocol. This is done in two steps: a small
step in which the zero-knowledge proof in which B plays the verifier is removed (from the (C, B)
interaction), and a big step in which the zero-knowledge proof in which A plays the prover is
removed (from the (A,C) interaction).

We start with the small step. We consider a modified party, denoted B′, that accepts or rejects
based solely on the y-value received in the validation stage. That is, B′ does not play the verifier in
the zero-knowledge proof given by C, and also ignores the MAC sent by C. Since we only omitted
checks that may make B reject, we have that

Pr[dec(CA,B) = acc & Case 1] ≤ Pr[dec(CA,B′) = acc & Case 1] (27)

The proof of the lemma proceeds by showing that the r.h.s is upper-bounded by 2ε + µ(n). We
stress that (by considering B′ rather than B) we have removed the zero-knowledge proof given by
C to B, but the zero-knowledge proof given by A to C still remains. The next subsection is devoted

54

to getting rid of the latter proof, which is the big step (mentioned above). Once this is achieved,
we turn (in Subsection 6.1.2) to analyzing the residual protocol, by reducing the analysis of its
execution in the concurrent three-part setting to an analysis of an auxiliary two-party protocol in
the standard stand-alone setting.

6.1.1 Simulating A’s zero-knowledge proof

We begin by showing that when C interacts with A and B′, the zero-knowledge proof given by A
to C can be simulated. Since the proof (given by A to C) is zero-knowledge, it seems that the
channel C (who plays the verifier in the proof) should be able to simulate it itself. This is true (by
definition) if the zero-knowledge proof is executed as stand-alone. However, the definitions of zero-
knowledge guarantee nothing in our setting, where the proof is run concurrently with other related
protocols (belonging to the (C,B′)-execution). Technically speaking, the zero-knowledge simulation
of A typically requires rewinding C. However, messages belonging to the (C, B′)-execution may be
interleaved with the proof. For example, C’s queries to A in the proof may depend on messages
received from B′. Rewinding C would thus also require rewinding B′. However, since B′ is an
external party, he cannot be rewound.

We remark that concurrent zero-knowledge does not solve this problem either, since it relates
to concurrent executions of a (zero-knowledge) protocol with itself, and not concurrently with
arbitrary protocols. Still, we use the ideas underlying the concurrent zero-knowledge proof system
of Richardson and Kilian [51] in order to address the problem that arises in our application.

We refer the reader to Appendix A.4 for a description of the Richardson and Kilian (RK) proof
system. Recall that we set the parameter m (the number of iterations in the first part of the RK
proof) to equal r+t(n), where r is the total number of rounds in the first two stages of our protocol,
and t(n) is any non-constant function of the security parameter n (e.g., t(n) = log log n).

We now motivate how the proof simulation is done in our scenario, where C interacts with A
and B′. In such a case (when B′ rather than B is involved), the total number of rounds in the
(C,B′) execution equals r = m− t (since B′ does not participate in the zero-knowledge proof given
by C in the validation stage). On the other hand, the number of iterations in the first part of the
RK-proof given by A to C equals m. Therefore there are t complete iterations in the first part
of this proof in which C receives no messages from B′. In these iterations it is possible to rewind
C without rewinding B′. This is enough to establish zero-knowledge, since the Richardson-Kilian
construction is such that as soon as rewinding is possible in one iteration, the entire proof may be
simulated. The crucial point is that we rewind C at a place that does not require the rewinding of
B′ (which is not possible, since B′ is an outside party). With this motivation in mind, we move to
our actual proofs.

The modification of A into A6zk. In our above description, when we say that A’s proof can be
simulated by C itself, this means that A can be modified to a party A6zk, whose protocol definition
does not include providing a zero-knowledge proof in the validation stage. Before continuing, we
formally define what we mean by this modification of A to A6zk. This needs to be done carefully
because the transcript (and not just the result) of the zero-knowledge proof affects other parts of
our protocol. Specifically, in the validation stage, A sends a MAC of her entire message-transcript
to C. This message-transcript includes also the messages of the zero-knowledge proof. Therefore,
the protocol of A6zk must be appropriately redefined to take this issue into account.

In the zero-knowledge proof with C, party A plays the prover. The essence of the modification
of A to A6zk is in replacing A’s actions as prover in the (A,C)-proof by C simulating the resulting

55

messages by itself. This modification works only if C’s view in the protocol execution with A6zk is
indistinguishable from its view in an execution with A. As mentioned, the MAC sent by A in the
validation stage refers to the entire message transcript, including messages from the zero-knowledge
proof. Therefore, the MAC value sent by A6zk must also include messages from the simulated proof.
However, A6zk does not see these messages as the simulation is internal in C; therefore the message
transcript of the proof must be explicitly given to her.

In light of this discussion, we define the modified A6zk to be exactly the same as A, except
that she does not provide a zero-knowledge proof (in her validation stage). Instead, at the point
in which A’s zero-knowledge proof takes place, she receives a string s that she appends to her
message transcript. This means that the only difference between A and A6zk’s message transcripts
is that A’s transcript includes messages from a zero-knowledge proof and A6zk’s transcript includes
s instead. Intuitively, if s is the transcript of the simulated proof, then A and A6zk’s message
transcripts are indistinguishable. This ensures that the MACs sent by A and A6zk, respectively, are
indistinguishable.

The simulation. We now show that for every channel C interacting with A and B′, there exists
a channel C ′ interacting with A6zk and B′ such that the channels’ views in the two cases are
indistinguishable. Since B’s accept/reject bit is part of C’s view (which is included in C’s output),
it follows that the probability that B′ accepts (in an execution with C ′ and A6zk) is negligibly close
to the probability that B′ accepts (in an execution with C and A). This enables us to continue
proving Lemma 6.1 by considering the setting where C interacts with A6zk and B′ (rather than with
A and B′).

Lemma 6.2 Let A6zk and B′ be as above. Then, for every ppt channel C there exists a ppt channel
C ′ such that, {

output(C ′A 6zk(Q,w),B′(w))
}

c≡
{
output(CA(Q,w),B′(w))

}

Proof: Our proof is based on the intuitive simulation strategy described above. In order to
formally see why this works, we first recall the RK-proof system (or actually a simplification of
it which suffices for our purposes). This proof system (for NP-statements) consists of two parts.
The first part consists of m iterations, where in iteration i the verifier (who is played by C in our
case) sends the prover a commitment to a random string, denoted vi. The prover then sends a
commitment to a random string, denoted pi, and the verifier decommits. The commitments used
are perfectly binding, and so given the commitment we can refer to the unique value committed to
by it. (Indeed, we shall make extensive use of this fact.) In the second part of the proof, the prover
proves (using a witness-indistinguishable proof [24]) that either there exists an i such that pi = vi

or that the original NP-statement (i.e., the one on which the proof system is invoked) is correct.
In a real proof, the prover will not be able to set pi = vi, except with negligible probability, which
implies that the proof system is sound (i.e., false statements can be proved only with negligible
probability). On the other hand, if there is one iteration of the first part in which the simulator can
rewind the verifier, then it can set pi = vi (because it rewinds after obtaining the decommitment
value vi and can thus set its commitment pi to equal vi). In this case, it can successfully execute the
witness-indistinguishable proof (by using this pi = vi and without knowing a proof of the original
statement).

Now, in our case there are t iterations in which no messages are sent to B′. In these iterations
it is possible to rewind C. The only problem remaining is that C may refuse to decommit (or
decommit improperly, which is effectively the same). If during the execution of a real proof, C

56

refuses to decommit, then the prover halts. During the simulation, however, we must ensure that
the probability that we halt due to C’s refusal to decommit is negligibly close to this probability
in a real execution. This prevents us from simply halting if, after a rewind, C refuses to decommit
(since this may skew the probability).

Before we continue, we define the concepts of promising and successful iterations, which are
used in describing our simulation strategy. Loosely speaking, a promising iteration is one that
enables the simulator to rewind C (i.e., C properly decommits before sending any message to B′),
with the hope of obtaining a successful simulation. (Recall that once C has been rewound, the
simulator can send a commitment to the value pi satisfying pi = vi.) However, even if C can be
rewound at some point, a successful simulation is not necessarily obtained. This is because after
rewinding, it is possible that C refuses to decommit (or sends a message to B′). Thus, a successful
iteration is one in which, after C receives a commitment to pi such that pi = vi, it (i.e., C) properly
decommits (before sending any messages to B′). That is:
• An iteration i is called promising if when C receives a commitment generated according to the

protocol instructions (i.e., a commitment to a uniformly distributed pi), the iteration is such
that no messages are sent to B′ and C decommits properly. (This refers to the situation before
any rewinding of iteration i.)

• An iteration i is called successful if when C receives a commitment to pi such that pi = vi, the
iteration is such that no messages are sent to B′ and C decommits properly. (This typically
occurs after rewinding when pi can be set to vi.)

We note that the notion of promising and successful relate both to the messages sent and how
they were generated. In our use below, an iteration may be promising before any rewinding has
been carried out (and indeed, we will rewind only promising iterations), and an iteration may be
successful after it has been rewound (where the simulator will always commit to a value pi = vi).

Restating the above motivating discussion using this terminology, we have that when any iter-
ation is successful, we can complete a full simulation of the proof. This is because the first part
of the proof is such that there exists an i for which pi = vi. Therefore the simulator (having an
adequate NP-witness) can execute the necessary witness-indistinguishable proof. Another impor-
tant point is that the probability that an iteration is successful is very close to the probability
that it is promising (by the hiding property of the commitment used on pi). Finally, we note that
unless there exists an iteration in which C refuses to decommit when it receives a commitment
to a random pi, there must be at least t promising iterations. Retrying to rewind each promising
iteration polynomially many times yields that with overwhelming probability, at least one of these
rewinding tries is successful, allowing us to complete the simulation.

The Actual Simulator: We now show how C ′ runs the simulation for C. The channel C ′ plays the
prover to C; in each iteration i it receives a commitment to vi from C and replies with a commitment
to a random string pi. If an iteration is not promising, then there are two possible reasons why: (1)
C refused to decommit – in this case C ′ halts the simulation (successfully); (2) C sent a message to
B′ during the iteration – in this case C ′ simply continues to the next iteration. We call this (first)
execution of the ith iteration the initial execution, and call the subsequent executions of the ith
iteration rewinding attempts. Note that rewinding attempts for iteration i take place only if the
initial execution of iteration i is promising.

If iteration i is promising, then C ′ obtains the decommitted value vi, rewinds C and commits
to pi = vi. That is, C ′ attempts to obtain a successful iteration. If the rewound iteration is
successful, then (as we have argued) C ′ can complete the entire simulation successfully. However,
the iteration may not be successful after the rewinding. That is, C may refuse to decommit or may

57

send messages to B′. As long as the rewound iteration is not successful, C ′ continues to rewind up
to N times (where N = O(n2)). If none of the rewinds were successful then C ′ resends its original
commitment to a random pi (i.e., the very same commitment sent in the initial execution), and
continues to the next iteration. We stress that each rewinding attempt is independent of the others
in the sense that C ′ sends an independent random commitment to pi = vi each time.

It is crucial that during a rewinding attempt C ′ blocks any message sent by C to B′. This is
because C cannot be rewound beyond a point in which it sent a message to B′ (because B′ is an
outside party and its message receipt event cannot be rewound). Furthermore, since C may refuse
to decommit, further rewindings (or a replay of the initial execution) may be necessary. Thus,
in case that C sends a message to B′ during a rewinding attempt, C ′ halts the attempt (without
forwarding the message), and rewinds again (up to N times).

The Output of the Simulator: We will show below that, with overwhelmingly high probability, either
the initial executions of all iterations are non-promising or one of the rewinding attempts succeeds.
In both cases C ′ completes the simulation, and outputs a transcript of a (simulated) proof. We
claim that this transcript is indistinguishable from transcripts of real executions of the RK-proof.

Consider first the simulation of the first part of the RK-proof. For each iteration, consider
the initial execution of this iteration by the simulator, and note that this execution is distributed
identically to the real execution. In case the initial execution is non-promising the simulator just
appends it to the simulation transcript (and truncates the simulation if the verifier has decommitted
improperly). Thus, this case is identical to the real execution. If, on the other hand, the initial
execution is promising then the simulator tries to rewind it. If none of the rewinding attempts
succeeds then the simulator appends the initial execution to the simulation transcript, which again
means that the appended part is distributed identically to the real execution. On the other hand, if
one of the rewinds is successful then the simulator appends its (i.e., the rewinding’s) transcript to
the simulation transcript. By the hiding property of the commitment scheme, the appended part
is computationally indistinguishable from the corresponding part in the real execution (although
these distributions are statistically far apart). We conclude that the simulation of the first part of
the RK-proof is computationally indistinguishable from the first part of a real RK-proof.

Assuming that the simulator has succeeded in generating a successful rewinding, it has obtained
an NP-witness to the claim that pi = vi. Playing the role of the prover while using this witness,
allows the simulator to produce a transcript of the second part of the RK-proof. By the witness-
indistinguishability of the proof system used in the second part, it follows that the simulated
transcript is computationally indistinguishable from the real one. (Actually, we rely on the fact
that the latter proof system has a strong witness-indistinguishability property; that is, if two
claims are computationally indistinguishable then so are the real proof transcripts regardless of
which witness is used by the prover [27, Sec. 4.6].) Thus, it remains to show that the probability
that the simulator fails to generate a successful rewind (in case some iteration is promising) is
negligible.

Analysis of the simulator’s failure probability: Recall that the simulator fails only if it has completed
a non-truncated simulation of the first part of the RK-proof without generating any successful
rewinding. Note that for this to happen, each of the simulated iterations must include a proper de-
commitment, or else the simulation terminates successfully while outputting a truncated transcript
(as the prover would do in a real proof). Since there at least t iterations for which C does not send
any messages to B′ (recall that there are m iterations and only m − t messages are sent from C
to B′), it follows that a non-truncated transcript must contain at least t promising iterations. The
simulation fails only if all N rewinding attempts for these promising iterations are not successful;

58

we show that for an adequate choice of N (the number of rewindings of a promising iteration), this
occurs with at most negligible probability.

The above statement is easy to establish in case the identities of the promising iterations are
fixed. If iteration i is always promising then a corresponding rewinding attempt must be successful
with overwhelming probability (or else a contradiction to the hiding property of the commitment
is reached). What makes the analysis more complicated is that the identities of the promising iter-
ations may be random variables (which may even depend on the transcript of previous iterations).

Our aim is to show that the simulation fails with negligible probability. That is, for every positive
polynomial p, we show that (for all but finitely many n’s) the simulation fails with probability
smaller than 1/p(n). In the rest of the analysis we assume that m <

√
n (this is easy to enforce,

possibly by artificially increasing the original security parameter n to a polynomial in n). We use
the following notation:
• Let X1, . . . , Xm be random variables such that Xi = 1 if and only if C sends no messages to B′

during the initial execution of iteration i (i.e., when a random commitment to a random pi is
sent, before any rewinding of iteration i).

• Let Y1, . . . , Ym be random variables such that Yi = 1 if and only if C correctly decommits during
the initial execution of iteration i.

Thus, an iteration i is promising if and only if Xi = Yi = 1.

We now introduce similar notations for rewinding attempts of iterations.
• Let X ′

1, . . . , X
′
m be random variables such that X ′

i = 1 if and only if C sends no messages to
B′ during a single rewinding attempt for iteration i, when a random commitment to pi = vi is
sent.

• Let Y ′
1 , . . . , Y

′
m be random variables such that Y ′

i = 1 if and only if C correctly decommits during
a single rewinding attempt for iteration i, when a random commitment to pi = vi is sent.

Thus, a given rewinding attempt for iteration i is successful if and only if X ′
i = Y ′

i = 1.
We note that some of the above random variables may be undefined, in which case we just

define them arbitrarily. Specifically, the random variables of iteration i are not defined (above) if
the simulation halted in some iteration j < i (which happens if and only if Yj = 0).

We start by showing that the success event X ′
i = Y ′

i = 1 occurs essentially as often as the
promising event Xi = Yi = 1. We wish to establish this not only for the a-priori probabilities but
also when conditioned on any past event that occurs with noticeable probability.39 Specifically, we
prove the following.

Claim 6.3 For every polynomial q, every i ≤ m, and every α ∈ {0, 1}i−1 either

Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α] <
1

q(n)
(28)

or
if Pr[Xi = Yi = 1 |Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α] ≥ 1

n
then Pr[X ′

i = Y ′
i = 1 |Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α] > 1

2n

(29)

39We note that Claim 6.3 and the remainder of the proof can be simplified using a non-uniform reduction. However,
since the rest of our proof uses uniform reductions, we present the more complicated uniform reduction here as well.

59

Proof: The claim follows by the hiding property of the commitment scheme. Specifically, an
algorithm violating the hiding property is derived by emulating the first i−1 iterations (of the real
execution) with the hope that Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α holds, which indeed occurs with
noticeable probability. Given that this event occurs, the algorithm can distinguish a commitment
to a random value from a commitment to a given vi. More precisely, contradiction to the hiding
property is derived by presenting two algorithms. The first algorithm emulates the real interaction
for i−1 iterations and checks if the event Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α occurred. If yes, then
it emulates the ith iteration. If it holds that Xi = Yi = 1, then the algorithm obtains vi from the
verifier decommitment. This string vi is then output by the first algorithm as the challenge string
for the commitments. Then, the second algorithm is given the view of the first algorithm along
with a challenge commitment which is either a commitment to vi or to a random pi. This algorithm
then re-emulates the ith iteration using the challenge commitment, and outputs 1 if and only if C
correctly decommits and sends no messages to B′. The point is that if the algorithm received a
commitment to a random pi, then it outputs 1 with probability exactly Pr[Xi = Yi = 1 |Y1 · · ·Yi−1 =
1i−1 &X1 · · ·Xi−1 = α]. In contrast, if it received a commitment to vi, then it outputs 1 with
probability exactly Pr[X ′

i = Y ′
i = 1 |Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α]. Thus, if the claim does

not hold, then the algorithm distinguishes commitments with non-negligible probability.

Using Claim 6.3, we show that the simulation fails with at most negligible probability. That is,

Claim 6.4 Let fail denote the event in which the simulation fails. Then, for every polynomial
p(·) and all sufficiently large n’s

Pr[fail] <
1

p(n)

Proof: Our aim is to upper bound the probability that the simulation fails, by considering all
possible values that X = X1 · · ·Xm can obtain in such a case. We have:

Pr[fail] =
∑

β∈{0,1}m

Pr[fail&X = β]

=
∑

α∈S

Pr[fail&X1 · · ·X|α| = α] (30)

where S is any maximal prefix-free subset of U
def= ∪m

i=1{0, 1}i, and Eq. (30) is justified below. Recall
that a set S is prefix-free if for every α, β ∈ S it holds that α is not a prefix of β. By maximality
we mean that adding any string in U to S violates the prefix-free condition. It follows that every
α ∈ {0, 1}m has a (unique) prefix in S. To justify Eq. (30) observe that the strings in {0, 1}m can
be partitioned into subsets such that all the strings in each subset have a unique prefix in the set S,
and so we can consider events corresponding to these prefixes rather than events that correspond
to all possible m-bit long strings.

For a constant k < t to be determined later, we define Hk to be the set of all strings having
length at most m − 1 and hamming weight exactly k (note that k will eventually be set to 1 +
2 limn→∞ logn p(n)). Let S1

def= {α′1 : α′ ∈ Hk} (i.e., strings of length at most m and hamming
weight k +1 that have no strict prefix satisfying this condition), and S2 be the set of all m-bit long
strings having hamming weight at most k. Observe that S1 ∪ S2 is a maximal prefix-free subset of
{0, 1}m. (Prefix-freeness holds because all strings in S1 have hamming weight k + 1 and so cannot
be prefixes of string in S2, nor can any m-bit string be a prefix of another m-bit string.) Applying
Eq. (30) we have:

60

Pr[fail] =
∑

α∈S1∪S2

Pr[fail&X1 · · ·X|α| = α]

=
∑

α′∈Hk

Pr[fail&X1 · · ·X|α′|+1 = α′1]

where the last equality follows because S1 = {α′1 : α′ ∈ Hk} and Pr[fail&X ∈ S2] = 0, where the
latter fact is justified as follows. Recall that the simulator may fail only if C properly decommits
in all the first m − 1 iterations, which implies that all Xi’s are properly defined (i.e., reflect what
actually happens the these iterations, rather than when fictitiously defined in an arbitrary manner).
This implies that there must be at least t ≥ k + 1 iterations/indices i such that Xi = 1 holds (i.e.,
no message was sent to B′), and so X /∈ S2. Now, using |Hk| < mk+1, we have

Pr[fail] < mk+1 · max
α′∈Hk

{Pr[fail&X1 · · ·X|α′|+1 = α′1]}

≤ mk+1 · max
α′∈Hk

{Pr[fail&X1 · · ·X|α′| = α′]}

We will show that, for every α′ ∈ Hk, it holds that

Pr[fail&X1 · · ·X|α′| = α′] <
1

mk+1 · p(n)
(31)

which establishes our claim that the simulation fails with probability smaller than 1/p(n). In order
to establish Eq. (31), we fix an arbitrary α′ ∈ Hk, let i = |α′|+ 1, and we consider two cases:

Case 1: Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α′] < 1
mk+1·p(n)

. In this case, using the fact that the
simulation never fails if any of the Yj ’s equals 0 (i.e., the fail event implies that all the Yj ’s
equal 1), it follows that Pr[fail&X1 · · ·Xi−1 = α′] < 1

mk+1·p(n)
as desired.

Case 2: Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α′] ≥ 1
mk+1·p(n)

. In this case, setting q(n) = mk+1 ·
p(n), we conclude that Eq. (29) holds. Furthermore, for every j ≤ i, it holds that Pr[Y1 · · ·Yj−1 =
1j−1 &X1 · · ·Xj−1 = α′′] ≥ 1

mk+1·p(n)
holds, where α′′ is the (j−1)-bit long prefix of α′. Thus,

Eq. (29) holds for α′′ too. We are particularly interested in prefixes α′′ such that α′′1 is a
prefix of α′. We know that there are k such prefixes α′′1 and we denote the set of their lengths
by J (i.e., j ∈ J if the j-bit long prefix of α′ ends with a one). We consider two subcases:

1. If for some j ∈ J , it holds that Pr[Xj = Yj = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 = α′′] ≥
1
n then (by Eq. (29)) it holds that Pr[X ′

j = Y ′
j = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 =

α′′] > 1
2n . This means that a rewinding attempt at iteration j succeeds with probability

greater than 1/2n, and the probability that we fail in O(n2) attempts is exponentially
vanishing. Thus, in this subcase Pr[fail&X1 · · ·Xi−1 = α′] < 2−n < 1

mk+1·p(n)
as

desired.

2. The other subcase is that for every j ∈ J , it holds that Pr[Xj = Yj = 1 |Y1 · · ·Yj−1 =
1j−1 &X1 · · ·Xj−1 = α′′] < 1

n . Recalling that failure may occur only if all Yj ’s equal
one, and letting α′ = σ1 · · ·σi−1, we get (using σj = 1 for j ∈ J)

Pr[fail&X1 · · ·Xi−1 = α′]

61

≤ Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α′]

=
i−1∏

j=1

Pr[Xj = σj &Yj = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 = σ1 · · ·σj−1]

≤
∏

j∈J

Pr[Xj = 1 &Yj = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 = σ1 · · ·σj−1]

< (1/n)k

By a suitable choice of k (e.g., k = 1 + 2 limn→∞ logn p(n)) and recalling that m <
√

n,
we have 1

nk = 1√
n

k+1 · 1

n
k−1
2

< 1
mk+1·p(n)

as desired.

Thus, we have established the desired bound of Eq. (31) in all possible cases. The claim follows.

Completing the (A,C) Simulation: So far we have focused on the simulation of the RK-proof (con-
currently to interacting with B′), but actually our goal is to simulate (A,C) by (A6zk, C

′), while
interacting concurrently with B′. Clearly, whatever happens in the (A,C) execution before the
RK-proof is emulated trivially by the (A6zk, C

′) execution (which is identical at this stage). The
issue is what happens after the (simulated) RK-proof. Recall that by the construction of A6zk,
party A6zk expects to receive a string s in place of the zero-knowledge proof. This string is then
concatenated to A6zk’s session-transcript before she (applies the MAC and) sends the MAC value.
In order to ensure that C’s view of the protocol in this simulation is indistinguishable from in a real
execution (where A proves the zero-knowledge proof), the channel C ′ must ensure that C receives
a MAC value that is indistinguishable from the MAC value that it would have received from A.
Channel C ′ does this by defining s to be the transcript of the zero-knowledge simulation. This
means that the resulting session-transcript of A6zk is identical to the transcript held by C. Further-
more, this transcript is indistinguishable from a transcript that C would hold after a real execution
with A (rather than in this simulated interaction). This implies that the MAC value sent by A6zk

is indistinguishable from one that A would have sent (because the transcripts are indistinguishable
to C even given the MAC-key k1(Q(w))). This completes the proof of Lemma 6.2.

Combining Eq. (27) and Lemma 6.2 (while noting that both the scheduling case and B’s decision
are visible by the channel), we get

Corollary 6.5 For every ppt C there exists a ppt Ĉ such that

Pr[dec(CA,B) = acc & Case 1] < Pr[dec(ĈA6zk,B′) = acc & Case 1] + µ(n)

A note on the number of rounds: Our simulator works given that the number of iterations
in the first part of the RK-proof is greater than the total number of the rest of the rounds in the
protocol by any non-constant function of the security parameter n (say log log n). We note that a
single additional round actually suffices. This can be shown using the techniques of [30], but would
further complicate the analysis.

6.1.2 Proof of a modified lemma 4.6 (when C interacts with A6zk and B′)

In view of Corollary 6.5, we now proceed to show that when C interacts with A6zk and B′, the
probability that B′ accepts in the synchronization of Case 1 is at most negligibly greater than 2ε.
That is, we proved

62

Lemma 6.6 For every ppt C

Pr[dec(CA6zk,B′) = acc & Case 1] < 2ε + µ(n)

Proof: Our first step is to reduce the concurrent setting to a two-party stand-alone setting.
The key point in this reduction is in noticing that according to the scheduling of Case 1, the
two polynomial evaluations are run sequentially without any overlap. Specifically, the (A6zk, C)-
evaluation terminates before the (C, B′)-evaluation begins. As a warm-up, consider a simplified
setting in which the entire (A6zk, C)-protocol consists only of a single polynomial evaluation; likewise
for the (C, B′)-protocol. Then, when the scheduling is as mentioned, a party P , can execute two
sequential polynomial evaluations with an adversary C ′; in the first P plays A6zk’s role and in the
second P plays B′’s role. That is, when this scheduling occurs the above two-party setting perfectly
simulates the concurrent setting.

The actual reduction is, however, more complex since the (A6zk, C) and (C, B′) protocols involve
other steps beyond the polynomial evaluation. The protocol that we define between P and C ′ must
correctly simulate these other steps as well. As we shall see, some of the additional steps can be
internally simulated by C ′, and some are emulated by an interaction of C ′ with P . Specifically, apart
from playing in both polynomial evaluations, P plays A6zk’s role in the (A6zk, C)-commitment stage
and B′’s role in the (C, B′)-validation stage. What remains is B′’s role in the (C,B′)-commitment
stage and A6zk’s role in the (A6zk, C)-validation stage; these are internally simulated by C ′. Table 1
shows which party (P or C ′) simulates A6zk and B′’s respective roles. Note that when we say
that C ′ plays a role, this means internal simulation of the corresponding stage by C ′ (who plays
both parties); whereas when we say that P plays a role this means that the corresponding stage
is emulated by C ′ interacting with P (who plays the other party). (For example, in the (C, B′)
commitment, C ′ plays B′’s role and this therefore means that the entire (C,B′) commitment is
internally run by C ′.) Table 1 also shows the information that is “needed” by the parties for the
simulation of each stage.

Roles
Stage A6zk B′

1. Commitment run by P ; needs (Q,w) run by C ′; needs nothing
2. Pre-Key Exchange run by P ; needs Q run by P ; needs w
3. Validation run by C ′; needs Q(w) run by P ; needs nothing

Table 1: The assignment of “simulation roles” to P and C ′.

In order to play the corresponding roles, both parties get suitable inputs. Specifically, Party P
is given the input (Q,w), which enables it to play the roles of A6zk and B′ (in any stage). Party
C ′ is given Q(w) as an auxiliary input (which, as we show, enables it to internally simulate the
remaining parts of the execution). Thus, we actually prove that Lemma 6.6 holds even when C
gets Q(w) as an auxiliary input.

The following protocol makes sense whenever the scheduling of Case 1 occurs (in the emulated
execution of CA6zk(Q,w),B′(w)). We will show that for every channel C, the (two-session concurrent)
execution of CA 6zk(Q,w),B′(w) in the scheduling of Case 1 is “simulated” (in some adequate sense) by
an adversary C ′ to a single-session execution of the following (mental experiment) protocol (where
C ′ may also internally emulate additional steps).

Protocol 6.7 (mental experiment protocol (P,C ′):)

63

Inputs:

• P has (Q,w), where Q is a linear (non-constant) polynomial and w ∈ D.

• C ′ receives the string Q(w), where (Q,w) is the input of P .

Operation:

1. Emulation of Stage 1 of the (A6zk, C)-execution (commitment stage):

• P sends C ′ a non-malleable commitment to (Q,w).

2. Emulation of Stage 2 of the (A6zk, C)-execution (pre-key exchange):

• P sends C ′ a commitment c1 = Commit(Q) = C(Q, r1) for a random r1.

• P and C ′ invoke an augmented polynomial evaluation, where P inputs the polynomial Q
and (c1, r1) and C ′ inputs c1 and some value wC (of its choice). Party C ′ then receives
the output value Q(wC) (or ⊥ in the case of incorrect inputs).

3. Emulation of Stage 2 of the (C,B′)-execution (pre-key exchange):

• C ′ sends P a commitment c2 = C(QC , r2), for some polynomial QC and r2 (of its
choice).

• C ′ and P invoke another augmented polynomial evaluation (in the other direction),
where C ′ inputs the polynomial QC and (c2, r2) and P inputs c2 and w. Party P receives
π, which equals either QC(w) or ⊥, from the evaluation.

4. Emulation of Stage 3 of the (C,B′)-execution (validation stage):

• C ′ sends a string y to P , and P outputs accept if and only if y = f2n(π).

We say that C ′ succeeds if P outputs accept at the conclusion of the protocol execution. We now
show that any C succeeding in having B′ accept in the concurrent protocol with the scheduling
of Case 1, can be used by a party C ′ to succeed with the same probability in the above protocol
with P . We prove this by having C ′ simulate the concurrent execution of C with A6zk and B′,
while interacting with P . We note that in this simulation, the values QC and wC referred to in
Protocol 6.7 intuitively represent the values that C uses in its secure polynomial evaluations with
A6zk and B′. However, this intuition can only be formalized once the polynomial evaluations are
replaced with ideal executions (because in the real model, we cannot say anything about how C
works, whereas in the ideal model, explicit QC and wC values must actually be produced).

Claim 6.8 Let C be a ppt channel interacting with A6zk and B′. Then there exists a ppt party C ′

interacting with P in Protocol-(P, C ′) such that

PrQ,w[P (Q,w) accepts when interacting with C ′(Q(w))] = Pr[dec(CA6zk,B′) = acc & Case 1]

Recall that CA6zk,B′ is actually a shorthand for CA 6zk(Q,w),B′(w), where (Q,w) are random as in the
l.h.s above.

Proof: The party C ′ incorporates C internally and perfectly simulates the concurrent setting with
A6zk and B′ for C (i.e., CA6zk(Q,w),B′(w)). First notice that Step (4) of the (P, C ′) protocol constitutes
the full validation stage of the (C, B′)-protocol (recall that the validation stage for B′ consists only
of checking that y = f2n(πB)). This means that the (P,C ′) protocol contains all stages of the
(A6zk, C) and (C,B′) protocols, except for the first stage of the (C,B′)-protocol and the third stage
of the (A6zk, C)-protocol. As mentioned above, these stages are internally simulated by C ′.

64

The C ′ simulation: We now describe how C ′ runs the simulation. Party C ′ invokes C and
emulates the CA6zk(Q,w),B′(w) setting for it, while interacting with P . This involves separately
simulating the (A6zk, C) and (C, B′) executions. This simulation is carried out as follows (recall
that C fully controls the scheduling):
• The (A6zk, C) Execution:

1. Stages 1 and 2: All messages from these stages of the execution are passed between C and
P (without any change). That is, C ′ forwards any messages sent from C (to A6zk) to P and
likewise, messages from P are forwarded to C.

2. Stage 3: C ′ internally emulates A6zk’s role here, and thus P is not involved at all. In this
stage C expects to receive the string y = f2n(Q(w)) and a MAC of the (A6zk, C) session-
transcript keyed by k1(Q(w)). Party C ′ can determine and send these messages since it
has Q(w) as input, and can thus compute both the y-string and the MAC-key (and so the
MAC value).

• The (C, B′) Execution:

1. Stage 1: C ′ internally emulates B′’s role here, and thus P is not involved at all. Recall
that B′’s role in this stage is as the receiver of a non-malleable commitment; therefore no
secret information is needed by C ′ to emulate this part (by using C).

2. Stages 2 and 3: When C sends the first message belonging to Stage 2 of the (C, B′)-
execution, party C ′ acts as follows:

• Scheduling Violation Case: If this first message was sent before the completion of
Stage 2 of the (A6zk, C) execution (i.e., the scheduling of Case 1 does not hold), then C ′

halts (the simulation fails).

• Scheduling Conforming Case: If this first message was sent after the completion of
Stage 2 of the (A6zk, C) execution (i.e., the scheduling conforms with Case 1), then C ′

continues the simulation by forwarding this and all consequent messages belonging to
these stages to P (and returning messages from P to C).

This completes the simulation. Note that, when the simulation succeeds, C’s view is identical to
a real execution with A6zk and B′. Recall that the (P,C)-protocol emulates Stages 1 and 2 of the
(A6zk, C) protocol before Stages 2 and 3 of the (C, B′) protocol. Therefore, the simulation succeeds
as long as C’s scheduling is such that Stage 2 of the (A6zk, C) execution is completed before Stage 2
of the (C,B′) execution begins. However this is exactly the definition of the scheduling of Case 1.
In other words, the simulation is successful if and only if the scheduling is according to Case 1.
Now, if the simulation is successful, then P accepts with the same probability as B′ would have.
On the other hand, if the simulation is not successful (i.e., Case 1 did not occur), then P never
accepts. We conclude that the probability that P accepts is exactly equal to the probability that
the scheduling is according to Case 1 and B′ accepts.

We note that since C ′ is given the value Q(w), it can also simulate this scenario for C when the
augmented definition of security is considered. (In the case that A6zk finishes first, its output key is
always a function of Q(w), and so the challenge session-key is either uniform or the same function
of Q(w). On the other hand, the case that B finishes first makes no difference because the challenge
session-key is presented after B’s decision bit is determined, and here we bound the probability
that B’s decision bit equals accept.) The rest of the proof of this lemma therefore follows also for
the augmented definition.

It remains to bound the probability that P accepts in Protocol 6.7.

65

Claim 6.9 For every ppt party C ′ interacting with P in Protocol 6.7 it holds that

PrQ,w[P (Q,w) accepts when interacting with C ′(Q(w))] < 2ε + µ(n)

Proof: We analyze the probability that P accepts in the two-party protocol for P and C ′ defined
above. This is an ordinary two-party setting, and as such it can be analyzed by directly considering
the security of the different modules.

We first modify the protocol so that in Step 1, party P sends a random commitment, instead
of a commitment to (Q,w). Due to the hiding property of the commitment, this can make at most
a negligible difference. (We stress that this replacement has no impact because this commitment
is not used anywhere in the rest of the protocol.40) Therefore, C ′ can internally emulate this
commitment and this stage can be removed from the protocol. We thus remain with a protocol
consisting of the following stages:
• (Emulation of Stage 2 of (A6zk, C)): P sends C ′ a commitment to Q and then P and C ′ execute

an augmented polynomial evaluation in which C ′ receives either Q(wC) for some wC (chosen
by C ′), or ⊥. By the security of the polynomial evaluation, C ′ receives either Q(wC) or ⊥ and
nothing else.

• (Emulation of Stage 2 of (C, B′)): C ′ sends P a commitment to some polynomial QC and then
C ′ and P execute an augmented polynomial evaluation in which P receives QC(w) or ⊥. By
the security of the polynomial evaluation, C ′ receives nothing in this stage.

• (Emulation of Stage 3 of (C, B′)): C ′ sends a string y to P and P accepts if y = f2n(QC(w)).
The intuition behind showing that P accepts with probability at most negligibly greater than 2ε is
as follows: C ′ must send the “correct” y based solely on the value Q(wC) that it (possibly) received
from the first evaluation and its auxiliary input Q(w). Now, if wC 6= w, then the only thing that
party C ′ learns about w (from Q(w) and Q(wC)) is that it does not equal wC . This is due to
the “pairwise independence” property of the random polynomial Q. Therefore, C must guess the
correct value for y from |D| − 1 possibilities (i.e., f2n(QC(w′)) for every w′ 6= wC). On the other
hand, the probability that wC = w is at most ε, because at the time that C ′ selects wC it knows
nothing about w (although it knows Q(w) for a random Q). A detailed analysis follows.

The above argument is based on the security of the polynomial evaluations. We therefore proceed by
analyzing the probability that P accepts in an ideal execution where the two polynomial evaluations
are replaced by ideal evaluations. We denote the ideal-model parties by P̂ and Ĉ ′. By the sequential
composition theorem of multi-party computation [16], we have that the accepting probabilities of
P (in a real execution) and P̂ (in an ideal execution) are at most negligibly different.

We now upper bound the probability that P̂ accepts in an ideal execution. Party Ĉ ′ is given
Q(w) for auxiliary input and in the first polynomial evaluation Ĉ ′ inputs a value wC (of its choice).
We differentiate between the case that wC = w and wC 6= w, and separately upper bound the
following probabilities:

1. Pr[P̂ = acc & wC = w]

2. Pr[P̂ = acc & wC 6= w]
40This is due to the fact that the zero-knowledge protocol of Stage 3 has already been removed.

66

Bounding the probability that P̂ = acc and wC = w: We actually show that Pr[wC = w] ≤
ε + µ for some negligible function µ. The only message received by Ĉ ′ prior to its sending wC is an
(ordinary) commitment to the polynomial Q. That is, Ĉ ′’s entire view at this point consists of its
auxiliary input Q(w) and Commit(Q). Due to the hiding property of the commitment, Commit(Q)
can be replaced by Commit(02n) and this makes at most a negligible difference. We therefore remove
the commitment and bound the probability that wC = w, where Ĉ ′ is only given Q(w). Since Q
is a random linear polynomial, we have that for every w, the string Q(w) is uniformly distributed.
That is, Q(w) reveals no information about w. Therefore, we have that Pr[wC = w] ≤ ε (with
equality in case wC ∈ D). This implies that when Ĉ ′ is given a commitment to Q (rather than to
02n), we have that Pr[wC = w] ≤ ε + µ(n). Therefore,

Pr[P̂ = acc & wC = w] ≤ Pr[wC = w] ≤ ε + µ(n) (32)

Bounding the probability that P̂ = acc and wC 6= w: We actually analyze the following
conditional probability: Pr[P̂ = acc | wC 6= w]. Recall that Ĉ ′’s view (after the first polynomial
evaluation) consists of its random tape, auxiliary input Q(w) and the following messages:

1. A commitment to a polynomial Q sent by P̂ .

As before, the commitment to Q can be replaced with a commitment to 02n with at most a
negligible difference. We therefore ignore this part of Ĉ ′’s view from now on.

2. An input–output pair (wC , Q(wC)) (or (wC ,⊥) in the case of incorrect inputs) from the first
polynomial evaluation, where wC 6= w.

We are going to ignore the output case (wC ,⊥), because C ′ knows a-priori which of the two
input/output cases will occur, and we may give it Q(wC) for free in the incorrect inputs case.

The continuation of the protocol involves Ĉ ′ selecting and inputting a polynomial QC into the second
polynomial evaluation and sending a string y, where P̂ accepts if and only if y = f2n(QC(w)). Re-
stated, the probability that P̂ accepts equals the probability that Ĉ ′, given its view (Q(w), wC , Q(wC)),
generates a pair (QC , y) such that y = f2n(QC(w)).

Now, the polynomial Q is random and linear, and we are considering the case that wC 6= w.
Therefore, by pairwise independence we have that Q(w) is almost uniformly distributed, even given
the value of Q at wC . (Since Q cannot be a constant polynomial, Q(w) is only statistically close
to uniform; this is however enough.) This means that given Ĉ ′’s view, the password w is almost
uniformly distributed in D − {wC}. Since both f2n and QC are 1–1 functions, we have that the
probability that Ĉ ′ generates a pair (QC , f2n(QC(w))) equals the probability that it guesses w,
which equals 1

|D|−1 = ε
1−ε . Replacing the commitment to 02n with a commitment to Q, we have

that for some negligible function µ,

Pr[P̂ = acc | wC 6= w] ≤ ε

1− ε
+ µ(n) (33)

Combining the bounds: Using Eq. (32) and Eq. (33), we conclude that in an ideal execution:

Pr[P̂ = acc] = Pr[P̂ = acc | wC = w] · Pr[wC = w] + Pr[P̂ = acc | wC 6= w] · Pr[wC 6= w]

≤ 1 · Pr[wC = w] +
ε

1− ε
· (1− Pr[wC = w]) + µ(n)

Pr[wC = w] =
ε

1− ε
+

1− 2ε

1− ε
· Pr[wC = w] + µ(n)

≤
(

1 + (1− 2ε)
)
· ε

1− ε
+ µ(n) = 2ε + µ(n)

67

where the last inequality is due to Pr[wC = w] ≤ ε + µ. This implies that in a real execution, the
probability that P accepts is at most negligibly greater than 2ε. The claim follows.

Lemma 6.6 follows by combining Claims 6.8 and 6.9.

Lemma 6.1 follows by combining Corollary 6.5 and Lemma 6.6.

6.2 Proof of Lemma 4.7 (The Synchronized Case)

Lemma 6.10 (Lemma 4.7 – restated; Case 2 - Synchronized): Let C be a ppt channel and define
Case 2 to be a scheduling of the protocol by which C completes the polynomial evaluation with A
after completing the non-malleable commitment with B. Then

Pr[B = acc & πA 6= πB & Case 2] < ε + µ(n)

Proof: The proof of this lemma relies on the non-malleability of the commitment sent in the
commitment stage of the protocol. As was explained in the proof sketch, in the case that πA 6= πB,
the validation stage ensures that B only accepts if the non-malleable commitment he received was
to (Q′, w), where Q′ 6= Q and w is A and B’s shared password. (Recall that in the case that
(Q′, w′) = (Q, w), party B rejects with overwhelming probability, unless πA = πB.)41 Furthermore,
the probability that C succeeds in generating such a commitment (in which Q′ 6= Q and yet w
is the second element) is at most negligibly greater than ε. We now formally prove both these
statements.

In order to use the non-malleability property (of the commitment sent in Stage 1), we define
the following relation R. Recall that the non-malleable commitment value sent by A is (Q,w),
and denote the value corresponding to the commitment received by B by (Q′, w′). Define R ⊂
{0, 1}3n × {0, 1}3n such that

((Q,w), (Q′, w′)) ∈ R if and only if (Q′, w′) 6= (Q,w) and w′ = w. (34)

That is, C “succeeds” with respect to R (and thus B may accept) if C does not copy A’s commitment
(or rather does not commit to the same pair) and yet the second element of the committed pair is
the correct password.

We consider the probability that B accepts in Case 2 and πA 6= πB in two complementary
subcases. In the first subcase, channel C succeeds with respect to the relation R and in the second
subcase, C fails. We prove claims showing the following:

1. Success Case: Pr[B = acc & Case 2 & πA 6= πB & ((Q,w), (Q′, w′)) ∈ R] < ε + µ(n)

2. Fail Case: Pr[B = acc & Case 2 & πA 6= πB & ((Q, w), (Q′, w′)) 6∈ R] < µ(n)

The lemma follows by summing up B’s accepting probability in the above two subcases. We begin
by upper bounding the success case. Specifically, we show that the probability that C succeeds in
generating a correct (related) commitment is at most negligibly greater than ε.

Claim 6.11 (Success w.r.t R): Let C be a ppt channel and denote by (Q′, w′) the value committed
to by C in the non-malleable commitment received by B (if the commitment is not valid, then
(Q′, w′) is taken as some fixed value). Then

Pr[Case 2 & ((Q,w), (Q′, w′)) ∈ R] < ε + µ(n)
41This is because the validation stage essentially enforces that πB = Q′(w′) (see Fact 6.14), and by the case

hypothesis Q′(w′) = Q(w) = πA.

68

Proof: The definition of non-malleability states that a commitment is non-malleable when run con-
currently with another commitment only. Therefore, in a simpler scenario in which the (A,C) and
(C,B) non-malleable commitments are run in isolation, we can directly apply the non-malleability
property to the relation R that we have defined above. However, in our scenario, other parts of the
(A,C) protocol can also be run concurrently to the (C, B) non-malleable commitment. Specifically,
by the scheduling of Case 2, (part of) the (A,C) pre-key exchange may run concurrently to the
(B,C) commitment (but Stage 3 of the (A, C) execution starts only after the (B, C) commitment
ends). The crux of the proof is in showing that the (A,C) pre-key exchange can be simulated. Given
such a simulation, we have a scenario in which the (A,C) and (C, B) non-malleable commitments
are run in isolation, and thus non-malleability holds.

Recall that A’s input to the pre-key exchange stage depends only on the polynomial Q (and is
independent of the password w). Therefore, if C has Q, then it can perfectly emulate this stage by
itself (this is true irrespective of the security of the modules making up the pre-key exchange stage
of the protocol). Fortunately, even if C is explicitly given Q, the probability that C can generate a
commitment to (Q′, w′) for which (Q′, w′) 6= (Q,w) and w′ = w is at most negligibly greater than
ε (recall that C’s sole aim here is to generate such a commitment). Thus, we prove that for every
ppt channel C given auxiliary input Q, it holds that

Pr[Case 2 & ((Q,w), (Q′, w′)) ∈ R] < ε + µ(n)

As we have described, C has Q and thus can perfectly emulate the (A,C) pre-key exchange. By the
scheduling of Case 2, we have that the (C,B) commit stage concludes before the completion of the
(A,C) pre-key exchange. Therefore, the probability that C succeeds with respect to R is the same
as when the (A,C) and (C, B) non-malleable commitments are run in isolation.42 We therefore
proceed by upper-bounding the probability that a ppt adversary C (given a commitment to (Q,w)
and auxiliary input Q) successfully generates a commitment to (Q′, w′) where ((Q,w), (Q′, w′)) ∈ R.

Intuitively, A’s commitment to (Q,w) does not help C in generating a related commitment.
Therefore, the probability of generating a commitment to (Q′, w) is the same as the probability of
guessing w. Formally, by the definition of non-malleability, for every C there exists a simulator Ĉ
who generates a commitment to (Q̂′, ŵ′) without seeing the commitment to (Q,w) such that

∣∣∣Pr[((Q, w), (Q′, w′)) ∈ R]− Pr[((Q, w), (Q̂′, ŵ′)) ∈ R]
∣∣∣ < µ(n)

Since w is uniformly distributed in D and Ĉ is given no information about w, the probability that
Ĉ generates a commitment to (Q̂′, w) is at most ε. Therefore, the probability that C generates a
commitment to (Q′, w) where Q′ 6= Q, is less than ε + µ(n) as required.

We note that the above holds also for the augmented definition of security. This is because in
Case 2, channel C concludes its non-malleable commitment before A terminates. Therefore, it may
receive a session-key challenge only after (Q′, w′) are determined.

We now show that when C fails with respect to R, then B accepts with at most negligible probability.

Claim 6.12 (Failure w.r.t R): For every ppt channel C,

Pr[B = acc & πA 6= πB & ((Q,w), (Q′, w′)) 6∈ R] < µ(n)
42Formally, an adversary attacking a non-malleable commitment protocol (and given Q as auxiliary input) can use

C in order to generate a related commitment with the same probability as C succeeds in our session-key protocol
when the scheduling is according to Case 2.

69

Proof: In proving this claim, we rely solely on the fact that C “fails” with respect to the relation
R, in order to show that B rejects. As described in the proof sketch, intuitively B rejects in this
case because the validation stage enforces consistency between the non-malleable commitment, the
polynomial input by C into the polynomial evaluation and B’s output from the polynomial eval-
uation. That is, with overwhelming probability, B rejects unless C inputs Q′ into the polynomial
evaluation and B’s output from the evaluation equals Q′(w′). However, B’s input into the polyno-
mial evaluation is w, and thus (by the correctness condition of secure protocols) B’s output must
equal Q′(w). Thus, with overwhelming probability B rejects unless Q′(w′) = Q′(w). As we will
show, this implies that πA = πB, in contradiction to the claim hypothesis. In the following fact, we
formally show that with overwhelming probability, when B accepts, its output from the polynomial
evaluation equals Q′(w) (recall that Q′ is the polynomial committed to by C in the non-malleable
commitment).

Fact 6.13 For every ppt channel C,

Pr[B = acc & πB 6= Q′(w)] < µ(n)

Proof: This fact is derived from the correctness condition of the secure polynomial evaluation
and the soundness of the zero-knowledge proof. Loosely speaking, the correctness condition of a
secure two-party protocol states that an adversary cannot cause the output of an honest party to
significantly deviate from its output in an ideal execution (where the output is exactly according
to the functionality definition). We stress that this has nothing to do with privacy and holds even
if the adversary knows the honest party’s input.

Now, let QC be the polynomial in the ordinary commitment sent by C to B before the polyno-
mial evaluation. Then, by the definition of the augmented polynomial evaluation, B’s output πB

is either QC(w) (in the case of correct inputs) or ⊥ (in the case of incorrect inputs). Therefore, in
a stand-alone two-party setting, we have that with overwhelming probability πB ∈ {QC(w),⊥}.

We now show that this also holds in our concurrent setting. As we have mentioned, the cor-
rectness requirement holds even if the adversary knows the honest party’s input. That is, it holds
even if C knows w (and Q), in which case C can perfectly emulate the entire (A,C) execution,
and we remain with a non-concurrent execution with B. The correctness condition thus holds and
we conclude that with overwhelming probability πB ∈ {QC(w),⊥}. However, since B accepts only
if y = f2n(πB) and this never holds when πB = ⊥, we have πB = QC(w) (with overwhelming
probability). Getting back to our original concurrent setting, we have:

Pr[B = acc & πB 6= QC(w)] < µ(n)

The proof is completed by noticing that the statement proved in the zero-knowledge proof implies
(among other things) that QC = Q′. Thus, by the soundness of the zero-knowledge proof (which
also holds in our setting), we conclude that

Pr[B = acc & πB 6= Q′(w)] < µ(n)

On the other hand, we now show that when B accepts, with overwhelming probability it holds that
πB = Q′(w′).

Fact 6.14 For every ppt channel C,

Pr[B = acc & πB 6= Q′(w′)] < µ(n)

70

Proof: In the first step of the validation stage, B receives a string y. The statement proved
by C (in zero-knowledge) includes the condition y = f2n(Q′(w′)). Furthermore, by another check
made by B, it rejects unless y = f2n(πB). Since f2n is a 1–1 function, we conclude that with
overwhelming probability, B rejects unless πB = Q′(w′).

We now use the above two facts to show that when ((Q,w), (Q′, w′)) 6∈ R, party B rejects with
overwhelming probability. There are two possible cases for which ((Q,w), (Q′, w′)) 6∈ R: either
(Q′, w′) = (Q, w) or w′ 6= w.
• Case (Q′, w′) = (Q,w): By Fact 6.13 (or equivalently by Fact 6.14), we have that with over-

whelming probability, B rejects unless πA = Q(w) = Q′(w′) = πB, in contradiction to the
hypothesis that πA 6= πB.

• Case w′ 6= w: By Facts 6.13 and 6.14 that with overwhelming probability whenever B accepts
it holds that Q′(w′) = πB = Q′(w). However, Q′ is a non-constant linear polynomial and is thus
1–1. This implies that w′ = w, in contradiction to the case hypothesis.

This completes the proof of Claim 6.12. We note that the above proof also holds for the augmented
definition of security. This can be seen by noticing that B rejects with overwhelming probability
even if C knows Q and w. Therefore, C can generate the session-key challenge itself.

Lemma 6.10 is obtained by combining Claims 6.11 and 6.12.

7 Simulating the Stand-Alone (A,C) Execution

In this section we show that C’s view of its execution with A can be simulated by a non-interactive
machine C ′′. That is,

Theorem 7.1 (Theorem 4.8 restated): For every ppt channel C ′ interacting with A only, there
exists a non-interactive machine C ′′, such that

{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
n,D,σ

2ε≡ {
w, Un, output(C ′′(σ))

}
n,D,σ

where Q is a random non-constant linear polynomial, D ⊆ {0, 1}n is any ppt samplable dictionary,
w ∈R D, and ε = 1

|D| .

Proof: As we described in the proof sketch, it is enough to prove that for every ppt channel C ′,
{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
2ε≡

{
w,Un, output(C ′A(Q,w̃)(σ))

}

where w, w̃ ∈R D are independently chosen passwords from D. This implies the theorem because
C ′′ can simulate C ′’s view by choosing Q and w̃ and invoking an execution of C ′A(Q,w̃)(σ). See the
proof sketch for details on how C ′′ works.

Notice that the distributions {w,Un, output(C ′A(Q,w̃))} and {w̃, Un, output(C ′A(Q,w))} are equiv-
alent. We therefore continue by showing that,

{
w, k2(Q(w)), output(C ′A(Q,w))

}
2ε≡

{
w̃, Un, output(C ′A(Q,w))

}
(35)

We begin by showing that the pair (w,Q(w)) is (1 − ε)-indistinguishable from (w̃, Un) at the end
of the polynomial evaluation. For this aim, we consider a modified party A2 who halts at the
conclusion of Stage 2 of the protocol (i.e., after the polynomial evaluation). Then, we show that
after an execution of C with A2, the pair (w, Q(w)) is (1−ε)-indistinguishable from the pair (w̃, Un)
with respect to C’s view. That is,

71

Lemma 7.2 For every ppt channel C ′ interacting with a party A2 who halts after the polynomial
evaluation, {

w, Q(w), output(C ′A2(Q,w))
}

ε≡
{
w̃, Un, output(C ′A2(Q,w))

}

where Q is a random non-constant linear polynomial, and w, w̃ ∈R D.

Proof: First note that the non-malleable commitment sent by A2 in this setting plays no role in the
continuation of the protocol (the commitment is referred to only in the validation stage, which A2

does not reach). Due to the hiding property of the commitment, if A2 commits to all-zeros instead
of to the pair (Q,w), this makes at most a negligible difference to C ′’s view. This enables us to
remove the non-malleable commitment entirely, because C ′ can internally simulate receiving such a
commitment. From here on, we consider the modified party A2 to be a party whose non-malleable
commitment is to zeros and who halts after the polynomial evaluation.

What remains is thus the (A2, C
′) pre-key exchange, consisting of A2 sending Commit(Q) to C ′

followed by a single polynomial evaluation. Since the polynomial evaluation is secure, C can learn
at most a single point of Q(·), but otherwise gains no other knowledge of the random polynomial
Q (as with the non-malleable commitment, Commit(Q) reveals nothing of Q). As described in the
proof sketch, this implies that C can distinguish Q(w) from Un with probability at most negligibly
greater than ε (where the ε advantage comes from the case that w turns out to equal the input
fed by C ′ into the polynomial evaluation). We now formally show how the limitation on C ′’s
distinguishing capability is derived from the security of the polynomial evaluation.

The security of the polynomial evaluation states that C ′ can learn no more in a real execution
than in an ideal scenario where the polynomial evaluation is replaced by an ideal module computed
by a trusted third party. We stress that the other messages sent by the parties in the protocol,
including the commitment to Q, remain unmodified in this (partially) ideal execution. Denote

the ideal model parties by Â2 and Ĉ ′ and an ideal execution by Ĉ ′Â2(Q,w)
(in this execution, Ĉ ′

is adversarial). By the definition of secure two-party computation, for every real adversary C ′

interacting with A2, there exists an ideal adversary Ĉ ′ interacting with Â2 such that the output
distributions of C ′ and Ĉ ′ are computationally indistinguishable. However, by the definition of
secure computation, the above output distributions should be indistinguishable also when given
parties’ respective inputs, and specifically A’s input (Q,w). That is,

{
(Q,w), output(C ′A2(Q,w))

}
c≡

{
(Q,w), output(Ĉ ′Â2(Q,w)

)
}

In particular it follows that

{
w, Q(w), output(C ′A2(Q,w))

}
c≡

{
w, Q(w), output(Ĉ ′Â2(Q,w)

)
}

(36)

{
w̃, Un, output(C ′A2(Q,w))

}
c≡

{
w̃, Un, output(Ĉ ′Â2(Q,w)

)
}

(37)

Thus, it suffices to show that for every ppt party Ĉ ′ interacting with Â2 in an ideal execution, it
holds that {

w, Q(w), output(Ĉ ′Â2(Q,w)
)
}

ε≡
{

w̃, Un, output(Ĉ ′Â2(Q,w)
)
}

(38)

We therefore consider an ideal execution of the pre-key exchange consisting of Â2 sending Ĉ ′ a
commitment to Q followed by an ideal augmented polynomial evaluation. The view of Ĉ ′ in such

72

an execution consists only of a commitment to Q and the result of the polynomial evaluation. (The
exact definition of the augmented polynomial evaluation can be found in Section 3.)

Notice that the distributions {w̃, Un, output(Ĉ ′Â2(Q,w)
)} and {w,Un, output(Ĉ ′Â2(Q,w)

)} are
equivalent. This is because Â2 uses w nowhere in the execution (recall that the non-malleable
commitment sent by Â2 is to all-zeros). Therefore, we should actually show that,

{
w, Q(w), output(Ĉ ′Â2(Q,w)

)
}

ε≡
{

w, Un, output(Ĉ ′Â2(Q,w)
)
}

(39)

Assume for now that the execution of the polynomial evaluation is such that Ĉ ′ always receives
Q(wC) for some wC input by it into the evaluation (and not ⊥ as in the case of incorrect in-
puts). Then, Ĉ ′’s view is exactly (r,Commit(Q), Q(wC)), where r is the string of its random
coin tosses and wC is determined by Ĉ ′ based on r and Commit(Q). For the sake of clar-
ity, we augment the view by wC itself (i.e., we write Ĉ ′’s view as (r,Commit(Q), wC , Q(wC))).
Assuming without loss of generality that Ĉ ′ always outputs its entire view, we conclude that
our aim is to show that {w, Q(w), (r,Commit(Q), wC , Q(wC))} is (1 − ε)-indistinguishable from
{w,Un, (r,Commit(Q), wC , Q(wC))}. We now show that if wC 6= w, then the above two tuples are
computationally indistinguishable. That is, we show that

{w,Q(w), (r,Commit(Q), wC , Q(wC)) | wC 6= w}
c≡ {w,Un, (r,Commit(Q), wC , Q(wC)) | wC 6= w} (40)

where Q is a random non-constant linear polynomial. First, by the hiding property of the com-
mitment scheme, we can replace the commitment to Q in the above distributions with a com-
mitment to 02n. (If this makes a non-negligible difference, then Ĉ ′ can be used to distinguish
a commitment to Q from a commitment to 02n. We remark that this argument actually only
holds if the probability that wC 6= w is non-negligible. However, this follows from the fact that
w ∈R D appears nowhere in the Ĉ ′A2(Q,w)

execution (recall that the non-malleable commitment
has been replaced with a commitment to zeros). Therefore, wC = w with probability at most ε.)
Next, having replaced the commitment to Q by a commitment to 02n, notice that the follow-
ing distributions are statistically close: {w, Q(w), (r,Commit(02n), wC , Q(wC)) | wC 6= w} and
{w,Un, (r,Commit(02n), wC , Q(wC)) | wC 6= w}.43 Then, by returning the commitment to Q in
place of the commitment to 02n, we obtain Eq. (40).

As we have mentioned, the password w ∈R D does not appear anywhere in the Ĉ ′A2(Q,w)

execution. Therefore, Pr[wC = w] ≤ ε (with equality when wC is chosen from D). Therefore, by
separately considering the case that wC 6= w (where the distributions cannot be distinguished) and
the case that wC = w (which occurs with probability at most ε), Eq. (39) follows.

This completes the analysis of the simplified case in which the output from the polynomial
evaluation is always Q(wC) for some wC (and never ⊥). However, Ĉ ′ may cause the result of the
evaluation to be ⊥ and we must show that this cannot help it. Intuitively, if Ĉ ′ were to receive ⊥
then it would learn nothing about Q and this would thus be a “bad” strategy. Nevertheless, it must
be shown that Ĉ ′ cannot learn anything by the mere fact that it received ⊥ and not Q(wC). The

43If Q was randomly chosen from all linear polynomials (rather than only from those that are non-constant),
then due to pairwise independence the distributions would be identical. However, because Q cannot be constant,
wC 6= w implies that Q(wC) 6= Q(w) always. On the other hand, Q(wC) = Un with probability 2−n. Therefore, with
probability 2−n the two distributions can be distinguished by seeing if the last two elements are equal or not. This
is the only difference between the distributions and they are therefore statistically close.

73

reason that Ĉ ′ indeed learns nothing from the latter event is because it can determine it a-priori
(i.e., the output is ⊥ if and only if Ĉ ′ does not supply the commitment explicitly sent to it in the
previous step by the honest A (which will always input the corresponding decommit information)).
This completes the proof of Lemma 7.2.

We now continue by showing that Lemma 7.2 implies Eq. (35) (and thus the current theorem);
that is, {

w, Q(w), output(C ′A2(Q,w))
}

ε≡
{
w̃, Un, output(C ′A2(Q,w))

}

implies that {
w, k2(Q(w)), output(C ′A(Q,w))

}
2ε≡

{
w̃, Un, output(C ′A(Q,w))

}

Notice that in the second equation, C ′ executes a complete execution of the protocol with A,
rather than a truncated execution with A2. Therefore, the additional messages sent by A in the
validation stage must be taken into account. Recall that in the validation stage A sends the string
y = f2n(Q(w)), proves a statement in zero-knowledge and sends a MAC (keyed by k1(Q(w))) of
the entire message transcript. In order to simplify the proof, we assume that A sends the MAC-key
k1(Q(w)) itself during the validation stage. Given the MAC-key (i.e., k1(Q(w))), the channel C ′

can always compute the MAC value by itself. Therefore, this only gives C ′ more information. We
start by ignoring the zero-knowledge proof (which, as we show below, is easily justified in this
context).

The proof is based on the fact that since G(s) = (f2n(s), k1(s), k2(s)) is a pseudorandom gen-
erator, the output key k2(Q(w)) is (1−O(ε))-pseudorandom, even given f2n(Q(w)) and k1(Q(w)).
This must be justified, since in our case the generator is seeded by Q(w) that is only (1 − ε)-
pseudorandom, whereas a generator is usually seeded by a truly random string. In the following
claim we show that if, given some information, the string Q(w) is (1 − ε)-pseudorandom (as pre-
viously shown), then given the same information along with f2n(Q(w)) and k1(Q(w)), the string
k2(Q(w)) is (1 − 2ε)-pseudorandom. (By “given” we mean that a ppt distinguishing machine is
given these strings, along with the challenge string which is either k2(Q(w)) or Un.) Applied to the
analysis of our protocol, this means that even after A sends the string f2n(Q(w)) and the MAC in
the validation stage, the output session-key k2(Q(w)) is (1− 2ε)-pseudorandom with respect to the
view of C ′.

Claim 7.3 Let I(·) be a random process, and assume that {w, Q(w), I(Q,w)} is (1−ε)-indistinguishable
from {w̃, Un, I(Q,w)}. Then {w, k2(Q(w)), I(Q,w), f2n(Q(w)), k1(Q(w))} is (1−2ε)-indistinguishable
from {w̃, Un, I(Q,w), f2n(Q(w)), k1(Q(w))}.

Indeed, the claim will be applied with I(Q,w) = output(C ′A2(Q,w)).

Proof: We prove the claim in three steps:

1. {w, I(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w))} ε≡ {w̃, I(Q,w), f2n(Un), k1(Un), k2(Un)}.
This is due to the hypothesis {w, I(Q,w), Q(w)} ε≡ {w̃, I(Q, w), Un}.

2. {w̃, I(Q,w), f2n(Un), k1(Un), k2(Un)} c≡ {w̃, I(Q,w), f2n(U (1)
n), k1(U

(1)
n), U (2)

n }, where U
(1)
n and

U
(2)
n are two independent uniform distributions.

This is derived directly from the fact that (f2n(Un), k1(Un), k2(Un)) is pseudorandom.

74

3. {w̃, I(Q,w), f2n(U (1)
n), k1(U

(1)
n), U (2)

n } ε≡ {w̃, I(Q,w), f2n(Q(w)), k1(Q(w)), U (2)
n }

This is because the hypothesis implies that {I(Q,w), Un} ε≡ {I(Q, w), Q(w)}.
Combining the above, we have that

{w, I(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w))} 2ε≡ {w̃, I(Q,w), f2n(Q(w)), k1(Q(w)), Un}
and this completes the proof of the claim.

Combining Lemma 7.2 and Claim 7.3, we now establish Eq. (35). We use the following facts:

1. In Stage 3, A sends the string y = f2n(Q(w)), proves a statement in zero-knowledge and
sends the MAC-key k1(Q(w)) (recall that we assume that A sends the MAC-key instead of
the MAC-value).

2. C ′ can simulate the zero-knowledge proof given by A in Stage 3, because here we are consider-
ing a stand-alone execution between A and C. Thus, the view of C ′ from the entire interaction
with A can be generated out of its view of the first two stages (i.e., output(C ′A2(Q,w))), the
string y = f2n(Q(w)) and the MAC-key k1(Q(w)).

Using I(Q,w) def= output(C ′A2(Q,w)), Lemma 7.2 asserts that the corresponding hypothesis of
Claim 7.3 holds. The corresponding conclusion (of Claim 7.3) implies that Eq. (35) holds (be-
cause output(C ′A(Q,w)) is easily computed from output(C ′A2(Q,w)), y = f2n(Q(w)) and k1(Q(w))).
The theorem follows.

As we have mentioned in the proof sketch, the above proof remains unchanged when proving the
security of Protocol 3.2 with respect to the augmented definition of security (Def. 2.5). This is
because in a stand-alone execution between A and C ′, the channel C ′ is given the session-key
challenge only after the entire execution has been completed. Therefore, the session-key challenge
can be generated from the input/output distribution as a post-processing step.

8 Simulating the (C, B) Execution

In this section we show how the entire (C,B) execution can be simulated. The simulation is such
that the joint distribution of C’s view in the simulation along with the password and session key is
at most (1 − 5ε)-indistinguishable from the joint distribution of its view in a real execution along
with the password and session-key.

Theorem 8.1 (Theorem 4.9 restated – simulating the (C, B) execution): For every ppt channel
C interacting with A and B, there exists a ppt channel C ′ interacting only with A, such that

{
w, k2(Q(w)), output(C ′A(Q,w)(σ))

}
n,D,σ

5ε≡
{
w, k2(Q(w)), output(CA(Q,w),B(w)(σ))

}
n,D,σ

where Q is a random non-constant linear polynomial, D ⊆ {0, 1}n is any ppt samplable dictionary,
w ∈R D, and ε = 1

|D| .

Proof: As we have described in the proof sketch, this lemma is proved in two stages. First, in
Lemma 8.2, we show that when C interacts with A and a modified party B6dec who does not output
any accept/reject bit, then the (C, B6dec) execution can be simulated. Next, in Lemma 8.3, we show
that B’s accept/reject bit can also be simulated. Combining these two lemmas together, we have
that the entire (C,B) execution can be simulated.

75

8.1 Simulating the (C, B 6dec) Execution

Lemma 8.2 (Lemma 4.10 restated): Let C̃ be a ppt channel interacting with A and a modified
party B 6dec who does not output an accept/reject bit. Then, there exists a ppt channel C ′ interacting
with A only, such that

{
w, k2(Q(w)), output(C ′A(Q,w))

}
c≡

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w))

}

Proof: Intuitively, B6dec’s role can be simulated without any knowledge of w. Loosely speaking,
this is because B 6dec only uses w in the (C̃, B6dec) polynomial evaluation, and in this evaluation C̃
receives no output. Formally, this is shown by proving that if B 6dec were to input an arbitrary,
fixed w′ ∈R D (into the polynomial evaluation), instead of w, then C̃ would not be able to tell the
difference. That is, for every ppt channel C̃,

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w))

}
c≡

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w

′))
}

(41)

(Observe that in the second distribution, B6dec’s input is w′.) We prove Eq. (41) even when C̃ is
given Q and w as auxiliary input. Now, since Q and w constitute all of A’s input, the channel
C̃(Q,w) can perfectly simulate the entire (A,C) execution. That is, for every ppt channel C̃ there
exists a ppt channel Ĉ such that the following two equations hold:

{w, k2(Q(w)), output(ĈB 6dec(w)(Q,w))} ≡ {w, k2(Q(w)), output(C̃A(Q,w),B6dec(w)(Q,w))}
{w, k2(Q(w)), output(ĈB6dec(w

′)(Q,w))} ≡ {w, k2(Q(w)), output(C̃A(Q,w),B6dec(w
′)(Q,w))}

It thus remains to show that
{
w, k2(Q(w)), output(ĈB 6dec(w)(Q,w))

}
c≡

{
w, k2(Q(w)), output(ĈB 6dec(w

′)(Q,w))
}

(42)

The latter is derived from the security of the polynomial evaluation. Intuitively, Ĉ obtains no
output from the polynomial evaluation, whereas the polynomial evaluation is the only part of the
entire protocol in which B6dec uses his input (of w or w′). Formally, we may consider a ppt Ĉ ′

that emulates the entire (Ĉ, B6dec) execution except for the polynomial evaluation that it actually
performs with B̂′ that uses input w or w′. That is, B̂′ is merely playing receiver in the polynomial
evaluation protocol, whereas Ĉ ′ is some (fancy) adversary for that protocol. Still, the security of
the latter protocol (as stand-alone) implies that Ĉ ′ cannot distinguish the case that B̂′ has input w
from the case that it has input w′ (because the ideal-model adversary cannot do so). We conclude
that Ĉ can distinguish the cases that B6dec has input w or w′ with at most negligible probability.
Eq. (42) follows, and thus so does Eq. (41).

We are now ready to show how C ′ works (recall that C ′ interacts with A only and its aim
is to emulate an execution of C̃ with A and B6dec). Machine C ′ begins by selecting an arbitrary
w′ ∈ D. Then, C ′ perfectly emulates an execution of C̃A(Q,w),B 6dec(w

′) by playing B6dec’s role in
the (C, B 6dec) execution (C ′ can play B6dec(w′)’s role because w′ is known to it), and relaying all
messages belonging to the (A,C) execution (i.e., passing each message sent by A to C̃, and each
message sent by C̃ to A). Finally, C ′ outputs whatever C̃ does. By the definition of C ′, we have

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w

′))
}
≡

{
w, k2(Q(w)), output(C ′A(Q,w))

}
(43)

The lemma follows from Equations (41) and (43).

76

8.2 Simulating B’s Accept/Reject Decision Bit

Lemma 8.3 (Lemma 4.11 restated): Let B 6dec be a modified party that does not output an ac-
cept/reject bit. Then, for every ppt channel C interacting with A and B, there exists a ppt channel
C̃ interacting with A and B6dec, such that

{
w, k2(Q(w)), output(C̃A(Q,w),B 6dec(w))

}
5ε≡

{
w, k2(Q(w)), output(CA(Q,w),B(w))

}

Proof: We prove this lemma by showing how the accept/reject bit of B can be predicted by C.
Specifically, we show that the MAC sent in the validation stage is such that if C was not reliable,
then B rejects with probability 1−5ε. This enables C̃ to “predict” B’s output-bit based on whether
or not C was reliable. We thus start by proving the security of the MAC when keyed by k1(πA)
(recall that πA

def= Q(w)). As we have mentioned in the proof sketch, we need to show that the
MAC is secure only before B outputs its accept/reject bit. Thus, we consider a scenario in which
C interacts with A and the modified party B6dec. In the following claim, we formally state the
security of the MAC. (Recall that for simplicity, we consider an implementation of a MAC by a
pseudorandom function. However, our proof can be extended to any secure implementation of a
MAC.)

Claim 8.4 (Claim 4.12 restated): Let C be an arbitrary ppt channel interacting with A and a
modified party B6dec as in Lemma 8.3, and let tA and tB denote the transcripts from the (A,C)
and (C,B 6dec) executions, respectively. Then, if tA 6= tB, it holds that the value MACk1(πA)(tB) is
(1 − 2ε)-pseudorandom with respect to C’s view. That is, for every probabilistic polynomial-time
distinguisher D, every dictionary D ⊆ {0, 1}n, every auxiliary-input σ and all sufficiently large n’s

∣∣∣Pr[D(MACk1(πA)(tB), CA(Q,w),B 6dec(w)) = 1 & tA 6= tB]

−Pr[D(Un, CA(Q,w),B 6dec(w)) = 1 & tA 6= tB]
∣∣∣ < 2ε + µ(n)

Proof: We prove this claim by first showing that the MAC-key k1(πA) is (1− 2ε)-pseudorandom
before A sends the MAC in the validation stage. Formally, consider a modified party A6mac who is
exactly the same as A excepts that it does not send the MAC message. Then, we show that for
every ppt C, {

k1(Q(w)), CA6mac(Q,w),B 6dec(w)
}

2ε≡
{
Un, CA6mac(Q,w),B 6dec(w)

}
(44)

where Q is a random non-constant linear polynomial and w ∈R D. First, we claim that for every
ppt channel C interacting with A6mac and B6dec, there exists a ppt channel C ′ interacting only with
A6mac, such that {

k1(Q(w)), C ′A6mac(Q,w)
}

c≡
{
k1(Q(w)), CA6mac(Q,w),B 6dec(w)

}

and {
Un, C ′A6mac(Q,w)

}
c≡

{
Un, CA6mac(Q,w),B 6dec(w)

}

The above two equations can be shown in the same way as Lemma 8.2 above. Therefore, in order to
obtain Eq. (44), it is enough to show that for every ppt channel C ′ interacting only with A6mac(Q,w)

{
k1(Q(w)), C ′A6mac(Q,w)

}
2ε≡

{
Un, C ′A6mac(Q,w)

}

77

Now, by Lemma 7.2, we have that after the conclusion of the polynomial evaluation between A6mac

and C ′, it holds that Q(w) is (1−ε)-pseudorandom to C ′. We claim that this implies that k1(Q(w))
is (1 − 2ε)-pseudorandom to C ′ at the conclusion of the complete protocol between A6mac and C.
This can be shown using an almost identical proof as in Claim 7.3. (We note that here we are
in a standard stand-alone setting, and so the zero-knowledge proof can be simulated, and reveals
nothing about k1(Q(w)).) This completes the proof of Eq. (44).

We have so far established that the MAC-key k1(Q(w)) used by A is (1 − 2ε)-pseudorandom
with respect to C’s view. It thus remains to show that using a (1− 2ε)-pseudorandom string as a
key to a pseudorandom function (for the MAC) yields a (1−2ε)-pseudorandom function. This then
implies that when tA 6= tB, the value MACk1(πA)(tB) is (1− 2ε)-pseudorandom with respect to C’s
view. (Recall that A sends MACk1(πA)(tA) in the protocol execution and thus this value itself is
not (1 − 2ε)-pseudorandom. However, since the MAC used is a (1 − 2ε)-pseudorandom function,
the claim holds for any t that C produces, including tB that is part of its view.) In the following
claim, we prove that MACk1(πA)(·) is a (1−2ε)-pseudorandom function. As in Claim 7.3, we model
any information C may have learned about Q and w during the protocol with A6mac by a random
process I(·) (i.e., I(Q,w) denotes output(CA6mac(Q,w))).

Claim 8.5 Assume that {k1(Q(w)), I(Q,w)} is (1−2ε)-indistinguishable from {Un, I(Q,w)}. Fur-
thermore, let fr(·) be a pseudorandom function when r is uniformly distributed. Then, given
I(Q,w), the function fk1(Q(w))(·) is (1− 2ε)-pseudorandom.

Proof: The proof is based on the idea that a string distinguisher that needs to distinguish k1(Q(w))
from Un can simulate oracle queries to fk1(Q(w))(·) or fUn(·) depending on its input. Since we know
that fUn(·) is indistinguishable from a random function (by the claim hypothesis), distinguishing
fk1(Q(w))(·) from a random function essentially means distinguishing k1(Q(w)) from Un. Details
follow.

Let D be a ppt oracle machine that receives the output of the random process I(Q,w) as well
as oracle access to either fk1(Q(w)) or a random function f . Then,

∣∣∣Pr[Dfk1(Q(w))(I(Q,w), 1n) = 1]− Pr[Df (I(Q,w), 1n) = 1]
∣∣∣

≤
∣∣∣Pr[Dfk1(Q(w))(I(Q,w), 1n) = 1]− Pr[DfUn (I(Q,w), 1n) = 1]

∣∣∣ (45)

+
∣∣∣Pr[DfUn (I(Q,w), 1n) = 1]− Pr[Df (I(Q,w), 1n) = 1]

∣∣∣ (46)

Eq. (46) is negligible by the definition of a pseudorandom function. On the other hand, Eq. (45) is
bounded above by 2ε + µ(n), because otherwise a ppt machine D′ that, given I(Q, w) and trying
to distinguish k1(Q(w)) from Un, can invoke D on input (I(Q,w), 1n) and answer all oracle queries
by using fx, where x denotes its input string (which is either k1(Q(w)) or Un).

This completes the proof of Claim 8.4.

We are now ready to show how C̃ works. Channel C̃ runs the protocol (with A and B6dec) by passing
all messages, unmodified, via C. Furthermore, C̃ checks whether or not C was reliable during the
execution. Recall that C is reliable if the (A, C) and (C, B) executions are run in a synchronized
manner, and C does not modify any of the messages sent by A or B. This is a syntactic feature,
which is easily checked by C̃ (since it views the entire interaction). If C was reliable then C̃ outputs
accept for B, otherwise it outputs reject for B. This completes the simulation of C’s interaction
with A and B. Let χC̃ denote the simulated accept/reject bit output by C̃.

78

Now, when C̃ predicts B’s output bit correctly, we have that C’s view in this simulation is
identical to a real execution with A and B. This means that the difference in the experiments
referred to in the lemma’s conclusion equals the probability that C̃’s prediction is wrong (i.e., the
probability that decB = acc and χC̃ = rej or vice versa). Noticing that χC̃ = acc if and only if C
is reliable, we have that for every distinguisher D,

∣∣∣PrQ,w

[
D

(
w, k2(Q(w)), C̃A(Q,w),B 6dec(w)

)
= 1

]
− PrQ,w

[
D

(
w, k2(Q(w)), CA(Q,w),B(w)

)
= 1

]∣∣∣
≤ Pr[decB = acc & reliableC = false] + Pr[decB = rej & reliableC = true]

First, notice that when C is reliable, B always accepts. That is, Pr[decB = rej & reliableC = true]
equals zero. We now show that Pr[decB = acc & reliableC = false] is at most negligibly more than
5ε, and this completes the proof of Lemma 8.3.

Proposition 8.6 (Proposition 4.13 – restated): For every ppt channel C,

Pr[decB = acc & reliableC = false] < 5ε + µ(n)

Proof: The proof of this proposition is based on the security of the MAC sent in the validation
stage. Intuitively, sending a MAC on the entire session transcript ensures that if any messages
were modified (as in the case of an unreliable C), then this will be noticed by B. However, in
our protocol, A and B may have different MAC-keys (in which case nothing can be said about
detecting C’s malicious behavior). Fortunately, the key-match property ensures that this happens
(undetectably by B) with probability at most 3ε.

The security of the MAC, shown above in Claim 8.4 states the following. Let tA and tB be A
and B’s respective message transcripts. Then if tA 6= tB, the string MACk1(πA)(tB) is (1 − 2ε)-
pseudorandom with respect to C’s view. By the definition of reliability, if C is not reliable then
indeed tA 6= tB and so MACk1(πA)(tB) is (1− 2ε)-pseudorandom with respect to C’s view.

Now, party B’s protocol definition is such that he rejects unless the last message he receives
equals MACk1(πB)(tB), where k1(πB) is the MAC-key used by B. We stress that the key used by B
for the MAC is k1(πB), whereas Claim 8.4 refers to a MAC keyed by k1(πA). However, if πA = πB

then k1(πA) = k1(πB). Therefore, if πA = πB then the claim holds and the probability that C
generates the correct MAC-value is at most negligibly greater than 2ε. That is,

Pr[B = acc & reliableC = false & πA = πB] < 2ε + µ(n)

On the other hand, if πA 6= πB then irrespective of the MAC, the probability that B accepts is at
most negligibly more than 3ε. This is due to the key-match property proven in Theorem 4.5. We
conclude that

Pr[decB = acc & reliableC = false]
= Pr[decB = acc & reliableC = false & πA 6= πB]

+Pr[decB = acc & reliableC = false & πA = πB]
< 3ε + 2ε + µ(n)

and the proposition follows.

As stated above, this completes the proof of Lemma 8.3.

79

8.3 Conclusion

Theorem 8.1 is obtained by combining Lemmas 8.2 and 8.3.

We note that when considering the augmented definition of security (Def. 2.5), the proof of
Lemma 8.2 remains unchanged. This is because Eq. (41) (and thus the lemma) holds even in
the case that C̃ is given Q and w and can generate the session-key challenge itself. On the other
hand, there are some minor differences in the proof of Lemma 8.3. In particular, one must justify
the correctness of Claim 8.4 even when C may also be given k2(Q(w)). That is, we must show
that the MAC-key k1(Q(w)) remains (1 − 2ε)-pseudorandom to C, even if it is given the session-
key k2(Q(w)) as well. However, this is derived from the property of the pseudorandom generator
G(s) = (k1(s), k2(s), f2n(s)). The actual proof of this is very similar to that of Claim 7.3. We
must also define how the challenge session-key is generated when B is replaced with B6dec. As we
described in the proof sketch, we define the challenge session-key in the case that B6dec concludes
first to always equal ⊥. Then, we rely on the fact that if B6dec concludes first, this implies that
C was not reliable, and so B would reject (except with probability 5ε). Therefore, having the
session-key challenge equal ⊥ in this case makes no difference (modulo a 5ε difference). The rest
of the proof remains almost the same.

Acknowledgements

We would like to thank Moni Naor for suggesting this problem to us and for his valuable input in the
initial stages of our research. We are also grateful to Alon Rosen for much discussion and feedback
throughout the development of this work. We also thank Jonathan Katz for helpful discussions,
and Ran Canetti, Shai Halevi and Tal Rabin for discussion that led to a significant simplification
of the protocol. Finally, we thank the anonymous referees for their hard work and many helpful
comments.

References

[1] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the
Shared Random String Model. In the 43rd IEEE Symposium on the Foundations of
Computer Science, pages 345–355, 2002.

[2] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating
a Fault Minority. Journal of Cryptology, 4(2):75–122, 1991.

[3] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Design and Analysis
of Authentication and Key Exchange Protocols. In the 30th ACM Symposium on the
Theory of Computing, pages 419–428, 1998.

[4] M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. In EUROCRYPT’00, Springer-Verlag (LNCS 1807), pages 139–155,
2000.

[5] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Ef-
ficient Protocols. In the 1st ACM Conference on Computer and Communications Security,
pages 62–73, 1993.

80

[6] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In CRYPTO’93,
Springer-Verlag (LNCS 773), pages 232–249, 1994.

[7] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party
Case. In the 27th ACM Symposium on the Theory of Computing, pages 57–66, 1995.

[8] M. Bellare and M. Yung. Certifying Permutations: Non-Interactive Zero-Knowledge Based
on Any Trapdoor Permutation. In Journal of Cryptology, 9(3):149–166, 1996.

[9] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In the ACM/IEEE Symposium on Research in Security and
Privacy, pages 72–84, 1992.

[10] S.M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In the 1st ACM
Conference on Computer and Communication Security, pages 244–250, 1993.

[11] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133–137, February
1982.

[12] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme
which hides all partial information. In CRYPTO’84, Springer-Verlag (LNCS 196), pages
289–302.

[13] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal of Computation, 13(4):850–864, 1984.

[14] M. Boyarsky. Public-key Cryptography and Password Protocols: The Multi-User Case.
In the 6th ACM Conference on Computer and Communication Security, 1999.

[15] V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password-Authenticated Key
Exchange Using Diffie-Hellman. In EUROCRYPT’00, Springer-Verlag (LNCS 1807), pages
156–171, 2000.

[16] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[17] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. In the 42nd IEEE Symposium on the Foundations of Computer Science, pages
136–145, 2001.

[18] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels. In EUROCRYPT’01, Springer-Verlag (LNCS 2045), pages
453–474, 2001.

[19] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In
the 30th ACM Symposium on the Theory of Computing, pages 209–218, 1998.

[20] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Commit-
ment. In the 30th ACM Symposium on the Theory of Computing, pages 141-150, 1998.

[21] W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22, pages 644–654, 1976

81

[22] W. Diffie, P.C. Van Oorschot and M.J. Wiener. Authentication and Authenticated Key
Exchanges. Designs Codes and Cryptography, 2(2):107–125, 1992.

[23] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

[24] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In
the 22nd ACM Symposium on the Theory of Computing, pages 416–426, 1990.

[25] M. Fischlin and R. Fischlin. Efficient Non-malleable Commitment Schemes. In
CRYPTO’00, Springer-Verlag (LNCS 1880), pages 413–431.

[26] Y. Gertner, S. Kannan, T. Malkin, O. Reingold and M. Viswanathan. The Relationship
between Public-Key Encryption and Oblivious Transfer. In the 41st IEEE Symposium on
the Foundations of Computer Science, 2000.

[27] O. Goldreich. Foundation of Cryptography: Volume 1 – Basic Tools. Cambridge University
Press, 2001.

[28] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[29] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal
of the ACM, 33(4):792–807, 1986.

[30] O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[31] O. Goldreich, L.A. Levin and N. Nisan. On Constructing 1–1 One-Way Functions. Elec-
tronic Colloquium on Computational Complexity, TR95-029, 1995.

[32] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM,
38(1):691–729, 1991.

[33] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Complete-
ness Theorem for Protocols with Honest Majority. In the 19th ACM Symposium on the
Theory of Computing, pages 218–229, 1987. For details see [28, Chapter 7].

[34] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

[35] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[36] S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. In the
5th ACM Conference on Computer and Communications Security, pages 122–131, 1998.

[37] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permu-
tations. In the 21st ACM Symposium on the Theory of Computing, pages 44–61, 1989.

[38] D.P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Computer
Communications Review, 26(5):5–26, 1996.

82

[39] J. Katz, R. Ostrovsky and M. Yung. Practical Password-Authenticated Key Exchange
Provably Secure under Standard Assumptions. In EUROCRYPT’01, Springer-Verlag
(LNCS 2045), pages 475–494, 2001.

[40] C. Kaufman, R. Perlman and M. Speciner. Network Security. Prentice Hall, 1997.

[41] J. Kilian. Basing Cryptography on Oblivious Transfer. In the 20th ACM Symposium on
the Theory of Computing, pages 20–31, 1988.

[42] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation.
In CRYPTO’01, Springer-Verlag (LNCS 2139), pages 171–189, 2001.

[43] S. Lucks. Open key exchange: How to defeat dictionary attacks without encrypting public
keys. In Workshop on Security Protocols, Ecole Normale Superieure, 1997.

[44] A. Menezes, P. Van Oorschot and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1997.

[45] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Prelimi-
nary version in Crypto’91, Springer-Verlag (LNCS 576), 1991.

[46] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology,
4(2):151–158, 1991.

[47] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP
can be Based on General Assumptions. Journal of Cryptology, 11(2):87–108, 1998.

[48] M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In the 31st ACM
Symposium on the Theory of Computing, pages 245-254, 1999.

[49] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large Net-
works of Computers. Communications of the ACM, 21(12):993–999, 1978.

[50] S. Patel. Number theoretic attacks on secure password schemes. In the 1997 IEEE
Symposium on Security and Privacy, pages 236–247, 1997.

[51] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In EUROCRYPT’99, Springer-Verlag (LNCS 1592), pages 415–431.

[52] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and
Public Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[53] V. Shoup. On Formal Models for Secure Key Exchange. Cryptology ePrint Archive, Report
1999/012, http://eprint.iacr.org/.

[54] M. Steiner, G. Tsudik and M. Waidner. Refinement and extension of encrypted key
exchange. ACM SIGOPS Operating Systems Review, 29(3):22–30, 1995.

[55] T. Wu. The secure remote password protocol. In the 1998 Internet Society Symposium
on Network and Distributed System Security, pages 97–111, 1998.

[56] A.C. Yao. Theory and Application of Trapdoor Functions. In the 23rd IEEE Symposium
on the Foundations of Computer Science, pages 80–91, 1982.

[57] A.C. Yao. How to Generate and Exchange Secrets. In the 27th IEEE Symposium on the
Foundations of Computer Science, pages 162–167, 1986.

83

A Cryptographic Tools

In this section we briefly describe the tools used in our construction. That is, we describe secure
two-party computation, string commitment and non-malleable string commitment, the Richardson-
Kilian zero-knowledge proof system, seed-committed pseudorandom generators and message au-
thentication codes. We present comprehensive and formal definitions for secure two-party compu-
tation as this forms the basis for the majority of our proofs.

A.1 Secure Two-Party Computation

In this section we present definitions for secure two-party computation. The following description
and definition is taken from [28, Chapter 7].

A two-party protocol problem is cast by specifying a random process which maps pairs of inputs
(one input per each party) to pairs of outputs (one per each party). We refer to such a process as
the desired functionality, denoted f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗. That is, for every pair
of inputs (x, y), the desired output-pair is a random variable, f(x, y), ranging over pairs of strings.
The first party, holding input x, wishes to obtain the first element in f(x, y); whereas the second
party, holding input y, wishes to obtain the second element in f(x, y).

Whenever we consider a protocol for securely computing f , it is implicitly assumed that the
protocol is correct provided that both parties follow the prescribed program. That is, the joint
output distribution of the protocol, played by honest parties, on input pair (x, y), equals the
distribution of f(x, y).

We consider arbitrary feasible deviation of parties from a specified two-party protocol. A few
preliminary comments are in place. Firstly, there is no way to force parties to participate in the
protocol. That is, possible malicious behavior may consist of not starting the execution at all, or,
more generally, suspending (or aborting) the execution at any desired point in time. In particular, a
party can abort at the first moment when it obtains the desired result of the computed functionality.
We stress that our model of communication does not allow us to condition the receipt of a message
by one party on the concurrent sending of a proper message by this party. Thus, no two-party
protocol can prevent one of the parties from aborting when obtaining the desired result and before
its counterpart also obtains the desired result. In other words, it can be shown that perfect
fairness – in the sense of both parties obtaining the outcome of the computation concurrently – is
not achievable in two-party computation. We thus give up on such fairness altogether.

Another point to notice is that there is no way to talk of the correct input to the protocol. That
is, a party can always modify its local input, and there is no way for a protocol to prevent this.

To summarize, there are three things we cannot hope to avoid.

1. Parties refusing to participate in the protocol (when the protocol is first invoked).

2. Parties substituting their local input (and entering the protocol with an input other than the
one provided to them).

3. Parties aborting the protocol prematurely (e.g., before sending their last message).

The ideal model. We now translate the above discussion into a definition of an ideal model. That
is, we will allow in the ideal model whatever cannot be possibly prevented in any real execution. An
alternative way of looking at things is that we assume that the two parties have at their disposal a
trusted third party, but even such a party cannot prevent specific malicious behavior. Specifically,

84

we allow a malicious party in the ideal model to refuse to participate in the protocol or to substitute
its local input. (Clearly, neither can be prevent by a trusted third party.) In addition, we postulate
that the first party has the option of “stopping” the trusted party just after obtaining its part of
the output, and before the trusted party sends the other output-part to the second party. Such an
option is not given to the second party.44 Thus, an execution in the ideal model proceeds as follows
(where all actions of the both honest and malicious party must be feasible to implement).

Inputs: Each party obtains an input, denoted z.

Send inputs to trusted party: An honest party always sends z to the trusted party. A malicious
party may, depending on z, either abort or sends some z′ ∈ {0, 1}|z| to the trusted party.

Trusted party answers first party: In case it has obtained an input pair, (x, y), the trusted
party (for computing f), first replies to the first party with f1(x, y). Otherwise (i.e., in case
it receives only one input), the trusted party replies to both parties with a special symbol, ⊥.

Trusted party answers second party: In case the first party is malicious it may, depending on
its input and the trusted party answer, decide to stop the trusted party. In this case the
trusted party sends ⊥ to the second party. Otherwise (i.e., if not stopped), the trusted party
sends f2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted party. A
malicious party may output an arbitrary (polynomial-time computable) function of its initial
input and the message it has obtained from the trusted party.

The ideal model computation is captured in the following definition.45

Definition A.1 (malicious adversaries, the ideal model): Let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ ×
{0, 1}∗ be a functionality, where f1(x, y) (resp., f2(x, y)) denotes the first (resp., second) element of
f(x, y). Let C = (C1, C2) be a pair of polynomial-size circuit families representing adversaries in
the ideal model. Such a pair is admissible (in the ideal malicious model) if for at least one i ∈ {1, 2}
we have Ci(I) = I and Ci(I, O) = O. The joint execution under C in the ideal model (on input pair
(x, y)), denoted idealf,C(x, y), is defined as follows
• In case C2(I) = I and C2(I, O) = O (i.e., Party 2 is honest),

(C1(x,⊥) , ⊥) if C1(x) = ⊥ (47)
(C1(x, f1(C1(x), y),⊥) , ⊥) if C1(x) 6= ⊥ and C1(x, f1(C1(x), y)) = ⊥ (48)

(C1(x, f1(C1(x), y)) , f2(C1(x), y)) otherwise (49)

• In case C1(I) = I and C1(I, O) = O (i.e., Party 1 is honest),

(⊥ , C2(y,⊥)) if C2(y) = ⊥ (50)
(f1(x, y) , C2(y, f2(x,C2(y))) otherwise (51)

44This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that the
trusted party sends the answer first to the first party, the first party (but not the second) has the option to stop the
third party after obtaining its part of the output. The second party, can only stop the third party before obtaining
its output, but this is the same as refusing to participate.

45In the definition, the circuits C1 and C2 represent all possible actions in the model. In particular, C1(x) = ⊥
represents a decision of Party 1 not to enter the protocol at all. In this case C1(x,⊥) represents its local-output.
The case C1(x) 6= ⊥, represents a decision to hand an input, denoted C1(x), to the trusted party. Likewise, C1(x, z)
and C1(x, z,⊥), where z is the answer supplied by the trusted party, represents the actions taken by Party 1 after
receiving the trusted party answer.

85

Equation (47) represents the case where Party 1 aborts before invoking the trusted party (and
outputs a string which only depends on its input; i.e., x). Equation (48) represents the case where
Party 1 invokes the trusted party with a possibly substituted input, denoted C1(x), and aborts
while stopping the trusted party right after obtaining the output, f1(C1(x), y). In this case the
output of Party 1 depends on both its input and the output it has obtained from the trusted party.
In both these cases, Party 2 obtains no output (from the trusted party). Equation (49) represents
the case where Party 1 invokes the trusted party with a possibly substituted input, and allows the
trusted party to answer to both parties (i.e., 1 and 2). In this case, the trusted party computes
f(C1(x), y), and Party 1 outputs a string which depends on both x and f1(C(x), y). Likewise,
Equation (50) and Equation (51) represent malicious behavior of Party 2; however, in accordance
to the above discussion, the trusted party first supplies output to Party 1 and so Party 2 does not
have an option analogous to Equation (48).

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exist no trusted third parties). In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-size
circuits. In particular, the malicious party may abort the execution at any point in time, and when
this happens prematurely, the other party is left with no output. In analogy to the ideal case, we
use circuits to define strategies in a protocol.

Definition A.2 (malicious adversaries, the real model): Let f be as in Definition A.1, and Π be
a two-party protocol for computing f . Let C = (C1, C2) be a pair of polynomial-size circuit families
representing adversaries in the real model. Such a pair is admissible (w.r.t Π) (for the real malicious
model) if at least one Ci coincides with the strategy specified by Π. The joint execution of Π under C
in the real model (on input pair (x, y)), denoted realΠ,C(x, y), is defined as the output pair resulting
of the interaction between C1(x) and C2(y).

We assume that the circuit representing the real-model adversary (i.e., the Ci which does not follow
Π) is deterministic. This is justified by standard techniques.

Security as emulation of real execution in the ideal model. Having defined the ideal and
real models, we obtain the corresponding definition of security. Loosely speaking, the definition
asserts that a secure two-party protocol (in the real model) emulates the ideal model (in which a
trusted party exists). This is formulated by saying that admissible adversaries in the ideal-model are
able to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissible
adversaries).

Definition A.3 (security in the malicious model): Let f and Π be as in Definition A.2, Protocol Π
is said to securely compute f (in the malicious model) if there exists a polynomial-time computable
transformation of pairs of admissible polynomial-size circuit families A = (A1, A2) for the real
model (of Definition A.2) into pairs of admissible polynomial-size circuit families B = (B1, B2) for
the ideal model (of Definition A.1) so that

{idealf,B(x, y)}x,y s.t. |x|=|y|
c≡ {realΠ,A(x, y)}x,y s.t. |x|=|y|

Implicit in Definition A.3 is a requirement that in a non-aborting (real) execution of a secure
protocol, each party “knows” the value of the corresponding input on which the output is obtained.
This is implied by the equivalence to the ideal model, in which the party explicitly hands the

86

(possibly modified) input to the trusted party. For example, say Party 1 uses the malicious strategy
A1 and that realΠ,A(x, y) is non-aborting. Then the output values correspond to the input pair
(B1(x), y), where B1 is the ideal-model adversary derived from the real-model adversarial strategy
A1.

Secrecy and correctness: By the above definition, the output of both parties together must
be indistinguishable in the real and ideal models. The fact that the adversarial party’s output is
indistinguishable in both models formalizes the secrecy requirement of secure computation. That
is, an adversary cannot learn more than what can be learned from his private input and output.
On the other hand, the indistinguishability requirement on the honest party’s output relates to
the issue of correctness. Loosely speaking, the correctness requirement states that if a party is
computing f(x, y), then the adversary cannot cause him to receive f ′(x, y) for some f ′ 6= f . This is
of course true in the ideal model as a trusted party computes f . Therefore the indistinguishability
of the outputs means that it also holds in the real model (this is not to be confused with the
adversary changing his own private input which is always possible). It is furthermore crucial that
the secrecy and correctness requirements be intertwined, see [16, 28] for further discussion.

General plausibility results: Assuming the existence of collections of enhanced trapdoor per-
mutations, one may provide secure protocols for any two-party computation (allowing abort) [57],
as well as for any multi-party computations with honest majority [33]. Thus, a host of crypto-
graphic problems are solvable assuming the existence of enhanced trapdoor permutations. Specif-
ically, any desired (input–output) functionality can be enforced, provided we are either willing to
tolerate “early abort” (as defined above) or can rely on a majority of the parties to follow the
protocol.

A.2 String Commitment

Commitment schemes are a basic ingredient in many cryptographic protocols. They are used to
enable a party to commit itself to a value while keeping it secret. In a latter stage the commitment
is “opened” and it is guaranteed that the “opening” can yield only a single value determined in the
committing phase.

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol through which
one party, called the sender, can commit itself to a value so that the following two conflicting
requirements are satisfied.

1. Secrecy (or hiding): At the end of the first phase, the other party, called the receiver, does not
gain any knowledge of the sender’s value (this can be formalized analogously to the definition
of indistinguishability of encryptions). This requirement has to be satisfied even if the receiver
tries to cheat.

2. Unambiguity (or binding): Given the transcript of the interaction in the first phase, there
exists at most one value that the receiver may later (i.e., in the second phase) accept as a
legal “opening” of the commitment. This requirement has to be satisfied even if the sender
tries to cheat.

The first phase is called the commit phase, and the second phase is called the reveal phase. Without
loss of generality, the reveal phase may consist of merely letting the sender send, to the receiver,
the original value and the sequence of random coin tosses that it has used during the commit phase.

87

The receiver will accept the value if and only if the supplied information matches its transcript of
the interaction in the commit phase.

Our informal definition above describes a perfectly binding commitment scheme. That is, there
exists only a single value that the receiver will accept as a decommitment. Therefore, even if the
sender is computationally unlimited, he cannot cheat.

We now present a construction of a non-interactive, perfectly binding bit commitment using
collections of one-way permutations (which are implied by the existence of collections of enhanced
trapdoor permutations). Specifically, let (I, D, F) be a collection of one-way permutations, where
loosely speaking, I is a probabilistic algorithm that samples a domain Di and a function fi, D is an
algorithm that receives the output i of I and samples a hard-to-invert value from the domain, and
F is an algorithm that receives i and any x ∈ Di and outputs fi(x). Below, we refer to a hard-core
predicate bi for fi. The commitment scheme is as follows:

1. Commit Phase: To commit to a bit τ ∈ {0, 1}, the sender runs I(1n) with random-tape rI

and obtains an index i. It then uniformly selects rx ∈ {0, 1}n, computes x = Di(rx) and
sends the tuple (i, fi(x), bi(x)⊕ τ).

2. Reveal Phase: The sender reveals the random-tape rI , the bit τ and the string x computed
in the commit phase. The receiver accepts τ as the decommitment if the index i is the result
of running I(1n) with random-tape rI , if fi(x) = α, and if bi(x) ⊕ τ = β, where (i, α, β) is
the receiver’s view of the commit phase.

It is easy to see that this construction is a secure commitment scheme. The reason that the sender
reveals the random-tape rI is to ensure that the index i is in the range of I. This ensures that f
is a permutation, and so perfect binding is achieved.46

In order to commit to a string of n bits, τ = τ1 · · · τn, the sender simply commits to each τi

separately as above. We denote the commitment by Commit(τ) = C(τ, r) where the randomness
used by the sender is r = r1, . . . , rn (∀i ri ∈R {0, 1}n).

A.3 Non-Malleable String Commitment

Loosely speaking, a non-malleable string commitment scheme is a commitment scheme with the ad-
ditional requirement that given a commitment, it is infeasible to generate a commitment to a related
value. We note that the commitment scheme presented in Section A.2 is easily malleable.47 The
concept of non-malleability was introduced by Dolev et al. in [23], where they also provide a per-
fectly binding, (interactive) non-malleable commitment scheme based on any one-way function. We
note that it is possible to construct a one-way function g (and not a collection of one-way functions)
from a collection of trapdoor permutations (I, D, F) by defining g(r, s) = (I(r), fI(r)(DI(r)(s))).

We now present an informal definition of a non-malleable commitment scheme. Let A be an
adversary who plays the receiver in a commitment protocol with a sender S. Furthermore, A
concurrently plays the sender in a commitment protocol with a receiver T (one can look at S

46We note that this assumes that the function sampling algorithm I always outputs a permutation. This is not a
problem for known candidates. Alternatively, one can construct perfectly-binding commitment schemes directly from
1–1 one-way functions (whose existence we also assume in this paper).

47The malleability of the commitment scheme of Section A.2 can be seen as follows. Let (y, b) be a commitment to
some bit τ (i.e., y = f(r) for some string r, and b(r)⊕ b = τ). Then, given this commitment, it is easy to generate a
commitment to τ by defining C(τ) = (y, 1− b). We stress that this can be done without any knowledge whatsoever
of the value of τ itself.

88

and T as executing a commitment protocol, with A playing a man-in-the-middle attack). To be
more exact, consider the following experiment. Let D be some distribution of strings from which
the values being committed to are chosen. In the experiment, the sender S chooses α ∈R D and
commits to α in an execution of the commitment protocol with A as the receiver. Concurrently, the
adversary A plays the sender in a commitment protocol with T as the receiver. We denote by β the
value committed to by A in the execution between A and T . The adversary A’s aim is to succeed in
having its committed value β be related to α (A is not considered to have succeeded if β = α; that
is, copying is not ruled out). Thus, for a given polynomial-time computable relation R, we denote
by Π(A, R), the probability that A’s commitment is to a string β such that (α, β) ∈ R. That is,
Π(A, R) denotes the probability that A succeeds in generating a commitment that is related (by
the relation R) to the commitment sent by S.

On the other hand, we consider another experiment involving an adversarial simulator A′ who
does not participate as the receiver in a commitment protocol with S. Rather, A′ sends T a
commitment to β and we denote by Π′(A′, R) the probability that (α, β) ∈ R for α ∈R D. That is,
Π(A′, R) denotes the a priori probability that a related commitment can be generated. We stress
that A′ must generate a “related” commitment without seeing any commitment to α.

We say that a string commitment scheme is non-malleable if for every ppt samplable distribution
D, every polynomial-time relation R and every adversary A, there exists an adversarial simulatorA′
such that |Π(A, R)−Π′(A′, R)| is negligible. Intuitively, this implies that the fact that A receives
a commitment to α does not noticeably help it in generating a commitment to a related β. This
formalization is conceptually similar to that of semantic security for encryptions (that states that
the ciphertext itself does not help in learning any function of the plaintext).

A.4 The Zero-Knowledge Proof of Richardson and Kilian

We first review the notion of zero-knowledge. Loosely speaking, zero-knowledge proofs are proofs
which yield nothing beyond the validity of the assertion. That is, a verifier obtaining such a proof
only gains conviction in the validity of the assertion. Using the simulation paradigm this require-
ment is stated by postulating that anything that is feasibly computable from a zero-knowledge
proof is also feasibly computable from the valid assertion alone.

The above informal paragraph refers to proofs as to interactive and randomized processes. That
is, here a proof is a (multi-round) protocol for two parties, call verifier and prover, in which the
prover wishes to convince the verifier of the validity of a given assertion. Such an interactive
proof should allow the prover to convince the verifier of the validity of any true assertion, whereas
no prover strategy may fool the verifier to accept false assertions. Both the above completeness
and soundness conditions should hold with high probability (i.e., a negligible error probability is
allowed). The prescribed verifier strategy is required to be efficient. See [27] for a formal definition
of interactive proofs. Zero-knowledge is a property of some prover strategies. More generally, we
consider interactive machines which yield no knowledge while interacting with an arbitrary feasible
(i.e., probabilistic polynomial-time) adversary on a common input taken from a predetermined set
(in our case the set of valid assertions).

Definition A.4 (zero-knowledge [35]): A strategy P is zero-knowledge on inputs from S if, for
every feasible strategy V ∗, there exists a feasible computation M∗ so that the following two probability
ensembles are computationally indistinguishable:

1. {(P, V ∗)(x)}x∈S
def= the output of V ∗ when interacting with P on common input x ∈ S; and

2. {M∗(x)}x∈S
def= the output of M∗ on input x ∈ S.

89

A general plausibility result [32]: Assuming the existence of commitment schemes, there exist
zero-knowledge proofs for membership in any NP-language. Furthermore, the prescribed prover
strategy is efficient provided it is given an NP-witness to the assertion that is proven.

The protocol of Richardson and Kilian [51]

We actually simplify their presentation in a way that suffices for our own purposes. In essence, the
protocol consists of two parts. In the first part, which is independent of the actual common input,
m instances of coin tossing into the well [11] are sequentially executed where m is a parameter
(to be discussed below). Specifically, the first part consists of m iterations, where the ith iteration
proceeds as follows: The verifier uniformly selects vi ∈ {0, 1}n, and commits to it using a perfectly
hiding commitment scheme. Next, the prover selects pi ∈R {0, 1}n, and sends a perfectly binding
commitment to it. Finally, the verifier decommits to vi. (The result of the ith coin-toss is defined
as vi ⊕ pi and is known only to the prover.)

In the second part, the prover provides a witness indistinguishable (WI) proof [24] that either
the common input is in the language or one of the outcomes of the m coin-tosses is the all-zero
string (i.e., vi = pi for some i). Intuitively, since the latter case is unlikely to happen in an actual
execution of the protocol, the protocol constitutes a proof system for the language. However, the
latter case is the key to the simulation of the protocol in the concurrent zero-knowledge model.
We utilize this in our setting as well, when setting m to be equal to the total number of rounds in
our own protocol (not including this subprotocol) plus any non-constant function of the security
parameter n. The underlying idea is that whenever the simulator may cause vi = pi to happen
for some i, it can simulate the rest of the protocol (and specifically Part 2) by merely running
the WI proof system with vi (and the prover’s coins) as a witness. (By the WI property, such an
execution will be indistinguishable from an execution in which an NP-witness for the membership
of the common input (in the language) is used.)

We remark that any perfectly hiding commitment scheme can be used in the first part of the
proof. In particular, 2-round schemes exist under the assumption of the existence of collections
of claw-free functions with efficiently recognizable index sets [27]. Alternatively, one can use an
O(n)-round scheme based on any one-way permutation [47]. However, our main theorem assumes
only the existence of collections of enhanced trapdoor permutations, and thus collections of one-
way permutations (rather than one-way permutations themselves). We now show how to modify
the commitment of [47] so that collections of one-way permutations may be used. In order to do
this, first note that the one-wayness of the one-way permutation is needed for the binding property,
whereas the fact that the function is 1–1 is used for the hiding property. Therefore, it suffices for the
receiver to choose the permutation f and prove in zero-knowledge that it is indeed a permutation.
This can be done by having the receiver simply prove that there exists a value r such that I(r) = f ,
where I is the function sampling algorithm.48 The fact that a standard zero-knowledge proof can be
used here to prove that f is a permutation is due to the fact that the perfect hiding property of the
commitment scheme (which relies on the fact that f is 1–1) is only used for the soundness property
of the Richardson-Kilian proof system. Furthermore, the soundness of the Richardson-Kilian proof
system is only used in Fact 6.13, where it is applied for a standard two-party, stand-alone setting.

48This assumes that the function sampling algorithm outputs a permutation with probability 1. In case this does not
hold, a different method of proving that f is a permutation is needed. General methods for achieving this can be found
in [8]. We remark that in actuality, the solution of [8] only provides a proof that f is almost a permutation. However,
this suffices by having the committer commit separately to shares of its input. With overwhelming probability, at
least one of these shares will be perfectly hidden.

90

A.5 Seed-Committed Pseudorandom Generators

A seed-committed pseudorandom generator is an efficiently computable deterministic function G
mapping a seed to a (sequence,commitment) pair that fulfills the following conditions:
• The sequence is pseudorandom, even given the commitment.

• The partial mapping of the seed to the commitment is 1–1.
We use the following implementation ([13, 12]) of a seed-committed generator. Let f be a 1–1
one-way function and b a hard-core of f . Then define

G(s) = 〈f2n(s), b(s)b(f(s)) · · · b(f2n−1(s))〉

This generator clearly fulfills the requirements: f2n(s) is the commitment and b(s) · · · b(f2n−1(s))
is the sequence.

We note that the following naive implementation does not work. Let G be any pseudorandom
generator and consider the seed as a pair (s, r). Then define the mapping (s, r) 7→ (G(s), C(s, r))
where C(s, r) is a commitment to s using randomness r. It is true that the sequence is pseudorandom
given the commitment. Furthermore, for every s 6= s′ and for every r, r′ we have that C(s, r) 6=
C(s′, r′). However, there may be an s and r 6= r′ for which C(s, r) = C(s, r′) and therefore the
mapping of the seed to the commitment is not necessarily 1–1.

A.6 Message Authentication Codes (MACs)

A Message Authentication Code, or MAC, enables parties A and B who share a joint secret key
to achieve data integrity. That is, if B receives a message which is purportedly from A, then by
verifying the MAC, B can be sure that A indeed sent the message and that it was not modified
by any adversary on the way. A Message Authentication Scheme is comprised of the following
algorithms:

1. A Key Generation algorithm that returns a secret key k.

2. A Tagging algorithm that given a key k and a message m, returns a tag t = MACk(m).

3. A Verification algorithm that given a key k, a message m and a candidate tag t, returns a bit
b = Verifyk(m, t).

We now briefly, and informally, describe the security requirements of a MAC. Let AMACk(·) be a
ppt adversary with oracle access to the tagging algorithm and let m1, . . . ,mq be the list of A’s
oracle queries during her execution. Upon termination, A outputs a pair (m, t). We say that A
succeeds if for every i, m 6= mi and furthermore Verifyk(m, t) = 1 (i.e., A generates a valid tag for
a previously unseen message). Then, a MAC is secure if for every ppt machine A, the probability
that A succeeds is negligible.

This ensures integrity, because if an adversary modifies a message sent from A to B to one
not previously seen, then B’s verification will surely fail (there is an issue of replay attacks which
we ignore here). The property that A cannot find an appropriate tag t for a “new” m, is called
unpredictability.

It is easy to see that any pseudorandom function is a secure implementation of a MAC. This
is because any random function is unpredictable and so any non-negligible success in generating t
such that f(m) = t (for an “unseen” m) distinguishes f from random.

91

