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Abstract

The relationship between nonlinearity and resiliency for a function F :
Fy — 3 is considered. We give a construction of resilient functions with
high nonlinearity. The construction leads to the problem of finding a set
of linear codes with a fixed minimum distance, having the property that the
intersection between any two codes is the all zero codeword only. This problem
is considered, and existence results are provided. The constructed functions
obtain a nonlinearity superior to previous construction methods.

I Introduction

A classical method for constructing keystream generators is to combine a set of lin-
ear feedback shift registers with a nonlinear Boolean function. Then the Boolean
function f(z), f : Fy — Fy must fulfill certain properties in order to increase the
time /space complexity of different attacks. Common attacks are Siegenthaler cor-
relation attack [23], Berlekamp-Massey linearity synthesis attack [13] and different
linear approximation attacks [8]. There are at least four main criteria that f(z)
should fulfill. These are: balancedness, high nonlinearity, high algebraic degree, and
some correlation immunity (for balanced functions, correlation immunity is usually
referred to as reciliency).

In a modern design of a stream cipher, one might in many situations want to
consider functions mapping to a block of output bits, i.e., functions of the form
f : F3 — F3* (n-input m-output functions). In block cipher design such functions
are referred to as S-boxes. S-boxes is a well studied subject, and different important
criteria have been considered. These include the propagation criterion (PC), the
strict avalanche criterion (SAC), etc. [17].

*This work has been presented at ISIT 2000.



For applications in stream ciphers, we turn our attention to the criteria mentioned
above for Boolean functions. In particular, we consider the interesting relationship
between resiliency and nonlinearity for balanced functions f : Fy — Fg'.

For the case of Boolean functions (m = 1), the results in [4] provide a simple
method of generating functions, {f} : Fy — Fy, with some fixed resiliency and high
nonlinearity. This construction has been used as a basis for further improvements in
e.g. [11, 19]. We now have quite a lot of results for the case m = 1. A nice summary
of the current situation can be found in [11].

When m > 1 the situation is different. A few papers [10, 27] have appeared before,
providing nonlinear functions with some resiliency. But, as will be demonstrated, it
is possible to significantly improve upon these results. We will in this paper present
a construction of highly nonlinear and resilient n-input m-output functions, where
m > 1. The construction, which for m = 1 is the same as [4], is based on a coding
theoretic problem, which to our knowledge is new. We are interested in finding
a set of linear codes with a fixed minimum distance d, such that the intersection
between any two codes is the all zero codeword only. This is referred to as a set
of nonintersecting linear codes. The problem is to find the maximal cardinality of
such a set. This is considered, and existence results are provided. The constructed
functions obtain a nonlinearity superior to previous construction methods.

The paper is organized as follows. Section II provides basic definitions and nota-
tions both for 1-output and m-output functions, m > 1. In Section III we describe
a new method for constructing highly nonlinear n-input m-output t-resilient func-
tions and briefly discuss constraints on the parameters n, m and . In Section IV, we
show how error correcting codes can be used in the construction, and in Section V
we provide some existence bounds regarding the cardinality of a set of nonintersect-
ing linear codes. Some numerical values for constructed functions and a comparison
with previous constructions [10, 27] are also presented.

IT Preliminaries

We review some relevant notation, definitions and known results in the considered
area. Since the function f(z), f : F} — Fy*, can be regarded as composed of m
Boolean functions f = (fi,..., fm), we first introduce some concepts for a Boolean
function f : F} — Fy [3, 4, 9]. A Boolean function f(x) can be expressed in algebraic
normal form (ANF), i.e., there are unique constants ag, ay,...,a12,...,019..., € Fy
such that

flx1,...,2n) =60 + a1z1 + -+ - + apTp+
+ a1271T9 + G1321%3 + +++ + G12.0T1T2 * * * Ty, (1)

where addition and multiplication are in Fy.

Definition 1 The algebraic degree of f(z), denoted deg(f), is defined to be the
mazximum degree appearing in the ANF.

Many properties for Boolean functions are studied through the Walsh transform (or
almost equivalently through the Walsh-Hadamard transform).
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Definition 2 The Walsh transform of a Boolean function f(z) is defined to be the
real-valued function F(w) over the vector space By given by

Flw) =) (1)@ (=1, (2)

where the dot product of vectors x and w is defined as - w = T1w1 + -+ * + TpWa.

We say that the Boolean function f(z) is balanced if P(f(z) = 1) = P(f(z) =
0) = 0.5. Alternatively, using the Walsh transform, f(x) is balanced if and only if
F(0) =0.

Let F, be the set of all Boolean functions in n variables. For two functions
f(z),g(x) € F, the Hamming distance between them is defined as,

du(f,9) = {z|f(2) # g(z), = € F3 }]. (3)

Definition 3 The nonlinearity of a Boolean function f(x), denoted by Ny, is de-
fined as

Ny = mindx(f, 9), (4)

where A, = {ap + a1z + -+ + apZy|a; € Fo,0 < i < n} is the set of all affine
functions on n variables.

The nonlinearity of f(z) can be obtained through the Walsh transform as follows,

Ny = 27 — 2 max |F(w)], w # 0. (5)
welfy
Finding Boolean functions with maximal nonlinearity is an important and well stud-
ied problem. For n even, maximal nonlinearity is obtained by the bent functions
[12, 18]. For n odd, maximal nonlinearity is only known for n < 9, and determin-
ing it for n > 9 is (probably) a very hard challenge [16]. Since bent functions are
not balanced, another hard open problem is to find the maximum nonlinearity for
balanced functions when 7 is even [7, 12, 20]
Continuing, the next definition concerns the function’s ability not to leak infor-
mation to the output when a subset of the input variables is kept fixed.

Definition 4 A Boolean function f(z) on n variables is said to be m-th order cor-
relation immune (m-CI), if for any m-tuple of independent identically distributed
binary random variables X;,, X,,, ..., X, , we have

im s

I(XZ'I,XZ'2,...,XZ' Z):O, 1< <teg <+ <ty €1, (6)

m !

where Z = f(X1,Xo,...,Xn), and I(X; Z) denotes the mutual information [6].

The following lemma was first proved by Siegenthaler [22], and characterizes the
correlation immunity in the Walsh transform domain.

Lemma 1 A Boolean function f(xq,...,z,) is m-th order correlation immune (m-
CI) if and only if
Fw)=0, w|l<wyw)<m, (7)

where wy(w) denotes the Hamming weight of w, i.e., the number of ones in w.
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Finally, an m-th order correlation immune Boolean function which is balanced is
called an m-th order resilient (m-resilient) function.

This paper will be directed towards the study of trade-offs between resiliency and
nonlinearity. In the special case of Boolean functions (as assumed above), a lot of
work has been done, see for example [4, 9, 11, 15, 19, 20, 26].

Now we generalize the notion above to functions F': Iy — F3'. Let F': F} — Fy
be a function defined by F(z) = (fi(z),..., fm(x)), where fi,..., fm, are Boolean
functions mapping Fy — Fy. We start with a formal definition of a resilient function.

Definition 5 Let F' = (f1, fa,- .-, fm) be a function from Fy to Fy* where 1 < m <
n, and let © = (z1, 2, ...,2,) € Fy.

1. Fis said to be unbiased w.r.t. a fized subset T = {j1,...,75:} of {1,...,n}, if
for every (ai,...,a;) € F

(fl (IE), e 7fm(x))|wj1:a1,...,wjt:at

runs through all the vectors in Ty, each 2" ™ times, when (%i,...,T;,_,)
runs through T~ where t > 0, {i1,... in_s} = {1,...,n} — {j1,---, 5} and
1 <o < lpg

2. F is said to be an (n,m,t)-resilient function if F is unbiased w.r.t. every
T CFy with |T| =t. The parameter t is called the resiliency of the function.

The following lemma (XOR Lemma) is well known and gives the relationship be-
tween a resilient function and its component functions [21].

Lemma 2 A function F = (f1, fa,..., fm), where each f;, 1 < i < m, is a func-
tion By — Fy, is uniformly distributed (unbiased) if and only if all nonzero linear
combinations of fi1,..., fm are balanced.

Hence, an immediate consequence of the previous lemma is the following.

Lemma 3 A function F = (f1, fo,..., fm) s an (n,m,t)-resilient function if and
only if all nonzero linear combinations of f1, fa,..., fm are (n,1,t)-resilient func-
tions.

The definition of nonlinearity follows in a similar manner, taken from [14].

Definition 6 The nonlinearity of F = (fi1, fa,..., fm), denoted by Np, is defined
as the minimum among the nonlinearities of all nonzero linear combinations of the
component functions of F', i.e.,

Ngp —mlnN (8)
feF
where .
A = ff: qufj:qi € {071}7(017---70m) 7é (0770)} (9)



Similarly, the algebraic degree of F' is defined as the minimum of degrees of all
nonzero linear combinations of the component functions of F', namely,

deg(F) = rfn;g deg(f), (10)

where F is defined in (9).

Some work on resilient functions have appeared. Important theoretical results
were obtained by Stinson and Massey [25] when disproving a conjecture in [1]. They
showed that there exists an infinite class of nonlinear functions with strictly higher
resiliency than what is possible to obtain using linear functions with the same pa-
rameters. In [27] the converse of the conjecture in [1] was demonstrated, that is, if
there exists a linear resilient function with certain parameters, then there exists a
nonlinear resilient function with the same parameters. Thus, starting with a linear
resilient function and applying a highly nonlinear permutation to it, a large number
of distinct nonlinear resilient functions can be obtained.

The connection between linear resilient functions and linear codes was established
in [1, 5], and the equivalence between resilient functions and large set of orthog-
onal arrays was considered in [24]. The main result can shortly be expressed as
follows. There exists a linear (n, m, t)-resilient function if and only if there exists a
linear [n, m,t + 1] code (equivalently, if there exists a large set of orthogonal arrays
LOAgn _py_¢(t,n,2) [2]).

Previous work on high nonlinearity for resilient functions is much more limited.
Essentially, two constructions have appeared, see [10, 27]. In [10], concatenation
of resilient functions with bent functions was used in order to obtain nonlinear
resilient functions. In [27], a highly nonlinear permutation is applied to a linear
resilient function. We will compare our results with these two constructions later
on.

Finally, we want to pay attention to the fact that functions mapping F': F} — F7*
have been extensively studied in the area of S-boz design for block ciphers [13]. Here,
e.g., the concept of nonlinearity appears. However, the tradeoff between nonlinearity
and resiliency has not been considered here.

IIT A construction of highly nonlinear (n,m,?t)-
resilient functions

In this section, we present our construction of t-resilient functions, {F'} : Fy
F7* with high nonlinearity. We use the Walsh transform as a tool for proving the
properties of F.. For m = 1 the construction will coincide with the one given in [4].
It is summarized by the following theorem.

Theorem 4 Letn,m,t and d be four positive integers withn > 4,1 <t <n—-3,1 <
d<n—t,m<n-—d.

For each pair (y,1), wherey € B¢, i =1,...,m, let AZ € 2~ such that wH(AZ) >
t+ 1, where wy() denotes the Hamming weight.
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Fora €Ty c=(ci,...,cm) € TP, let

m
soe =y €D Al =a}|.
i=1

Finally let s* = max ey MaX,cgn—d 5gc-
We now define a function F : Fy — F* by
F(y,xz) = (Azllx7 AZ:E, o AT,
where y = (y1,...,yq) €EFS, 2 = (21,...,2n_q) € F57%. Then the following holds:
1. F is uniformly distributed if Y ;- ciAZ #0, for any c € F* ¢ # 0.

2. F is t-resilient if for any a € Ty~% | 0 < wt(a) < t and c € FP, ¢ # 0, it holds
that 31 | c; Al # a.

3. Np =2n 1 — g*on—d-1,

Proof.
1. Let g. : F§ — F, be a function defined by g.(y,z) = >, c;Alx for ¢ € Fy',
¢ # 0. Then
F,.(0) = Z(_l)gc(y,w) — ZZ(_l)(qA;JF...JFCmAgz)z =0,
Y,z Yy T

since by assumption Y ", ¢;A} # 0, for any ¢ € F*, ¢ # 0. Now F,,(0) = 0
implies that g. is balanced and Lemma 2 then proves that F(y,z) is also
balanced.

2. We use Lemma, 3 and show that all nonzero linear combinations of the compo-
nent functions of F" are (n, 1,t)-resilient functions. Let g.(y,z) = Y ;% ;AL
for some ¢ € F*, ¢ # 0. Then, for any (b,a) € Fy with 1 < wg(b,a) < t, we
have

Fgc(b,a) = Z(—l)gc(y’w)(_1)(”70)'(11,96)

Y,z
— Z(_l)zzmzl c,-Agw(_l)by-i—aw
Y,z
= > (-1 Z(_1)<61Aé+~~-+CmA?+a>w_ (11)
y z

Now Y. (—1)@dttemdfta)z — ¢ jf 3" ¢;Aj # a. Since 0 < wy(a) < t,
this always holds and then g.(y, x) is t-resilient for any ¢ € FJ*, ¢ # 0. Through
Lemma 3 we get that F(y, z) is t-resilient.
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3. Let ge(y,z) = Y iv| ;AL for some ¢ € Fy*, ¢ # 0. Then, by (11),

Fgc (b7 a) = Z(—l)by Z(—l)(clA:ll/'i'""i'cmAZz-l-a)w

y T

D D G (12)

{y| 3Ly cidy=a}

Hence,
< n—d
1%2X|Fgc(b,a)| < 2 irel]%%cmgxs (13)
= s* 2" (14)

If we let b= 0 in (12), we have

oo (0,0)| = 224 {y| Y _ eiAy, = a}| = 2%
i=1

It follows that

n%ax|.7-"c(b,a)| > max|.7—"g(0,a)| (15)
= 2" maxmaxs], (16)

cE]F’m a
= s* 2" (17)

Therefore, maxy q | Fy. (b, a)| = s*2" 4. By eq. (5),

Np =271 — gron—d-1, (18)

0

Note that in this construction the component functions are actually a concate-
nation of 2¢ linear t-resilient functions in n — d variables. Thus, y € F can be
viewed as a specific address to some linear function. Clearly, a large number of
distinct functions with same parameters can be obtained by permuting the values

of (4;,...,Ay). Let us for convenience introduce the following notation,
1 2 m
A(1)0~~~00 Agomoo T A00~~~00
m
A= Ago..or Agoor vt AGh-o1
1 2 m
A11~~11 A11~~11 e A11~~11

By equation (18), the nonlinearity of F' depends only on two parameters, namely,
s* which is the maximum number of identical vectors appearing in any linear com-
bination of A’s columns, and d which is to be maximized in order to obtain highest
nonlinearity. In our construction we focus on s* = 1. This leaves us with a maxi-
mization problem on d. We would like to find the smallest value of n — d under the
condition that we can construct the matrix A with s* = 1.



This leads to certain conditions on A. Our first observation is that if F' is to be
t-resilient, the vectors contained in each row of the matrix A spans an [n—d, m,t+1]
linear code. This follows directly from the condition

wir(Y Al >t+1, Ve=(c,...,cn) #0,

i=1

in 2. of Theorem 4. The second observation is that if the nonlinearity of F'is to be
maximized for a fixed parameter d, i.e., we want to achieve s* = 1, then

ZciAZ # ZCZ'AZ” Ve=(c1y...,cm) #0,
i=1 i=1

if y # y'. We will consider these properties much more in the next section. But
before that, we provide the main results of two previously known constructions, and
show an example of our construction for comparison.

Zhang and Zheng [27] showed how to transform linear resilient functions into
nonlinear resilient functions based on the following result.

Lemma 5 [27] If there exists a linear (n, m, t)-resilient function, then there exists a
nonlinear (n, m,t)-resilient function F(z) whose nonlinearity satisfies Np > 27! —
2"=3™ gnd whose algebraic degree is m — 1.

Another construction of nonlinear (n,m, t)-resilient functions was examined in [10].
The performance is given as follows.

Lemma 6 [10] For any even | such that | > 2m, if there exists an (n — I, m,1)-
resilient function ¥ (z), then there exists an (n,m,t)-resilient function F(x) whose
nonlinearity satisfies Np > 271 — 2n—5-1,

The resilient functions required in the above lemmas can be obtained through good
error correcting codes. As proved in [10], there is a tradeoff between the nonlinearity
and resiliency when the two constructions given above are compared. Lemma 5
gives higher nonlinearity than Lemma 6, while the latter gives larger resiliency for
the same n and m.

In the following example we demonstrate our construction and show that it gives
better nonlinearity for a particular choice of parameters. Other choices of the pa-
rameters n, m,t will be examined later.

Example 1 Consider a function F(y,z) : T} — F2. Choose d = 4 in Theorem
1. Then the function defined by F(y,z) = (Ayz, A2z) will be a (10,2, 2)-resilient
function with nonlinearity N = 480, provided s* = 1. The set of vectors Agll and AZ
is given below in matriz form, where every entry in A specifies a linear t-resilient
Boolean function on n — d variables.



( (100110)  (111000) '\
(111000)  (011110)
(011110)  (100110)
(010011)  (011100)
(011100)  (001111)
(001111)  (010011)
(101001)  (001110)

4 | (oo1t10)  (r00111)
~ | (100111)  (101001)
(110100)  (000111)
(000111)  (110011)
(110011)  (110100)
(011010)  (100011)
(100011)  (111001)
(111001)  (011010)

\ (001101)  (110001) /

It is easily verified that the linear combinations of the vectors in each row of A yield
new wvectors all having the weight greater than or equal to 8 (t + 1), as required.
Furthermore, none of the vectors appear more than once in each column of A or in
any linear combination of A’s columns, i.e., s* = 1. Thus, the function F(y,x) is
indeed 2-resilient and the nonlinearity is given by,

Np = 2n 1 — 9n—d=1 — 4g().

Since, m = 2 in the example above, it is not possible to obtain a nonlinear (10,2, 2)-
resilient function or any nonlinear (n,2,t)-resilient function using the Zhang and
Zheng construction.

Suppose, that we want to construct a (10,2, 2)-resilient function using the con-
struction in Lemma 6. Since m = 2, the requirement is that there must exist a
(10 — 1,2, 2)-resilient function in order to construct a (10,2,2)-resilient function.
According to Lemma 6, | is even and | > 2m. Forl > 6 it is easily proved that a
(10 — 1,2, 2)-resilient function does not exist. Thus, the only possibility is to take
[ =4, which gives a nonlinearity of,

Np >omt _9n—5-1 — 384,

IV How to construct the matrix A

As mentioned before, the nonlinearity depends on the value of d. Hence, we first note
that for any given (n,m,t), n being the number of input variables, m the number of
output variables and ¢ the order of resiliency, d must satisfy the following inequality,

(2= Gy (L) 2 w

The inequality is a simple consequence of the fact that for any component function
of F' we have to choose the vectors in F3~¢ with weight greater than the order of
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resiliency. Thus, for any n, ¢, let dy,q be the largest value of d such that (19) holds.
An upper bound on the nonlinearity for this construction, denoted N¥’, is obtained
as,

N}z;b < 2n—1 _ 2n—dmaw—1.

Computing the values of dy,q, by using (19), Table 1 is obtained.

| Nr(dmas) | n |
t 7 8 9 10 11 12
1 56 (3) | 112 (3) | 240 (4) | 480 (4) | 992(5) | 1984(5)
2 48 (2) [ 112 (3) | 240 (4) | 480 (4) | 992(5) | 1984(5)
3 48°(2) | 96 (2) | 224 (3) | 480 (4) | 960(4) | 1984(5)
4 32 (1) | 96 (2) | 192 (2) | 448 (3) | 960(4) | 1920(4)

Table 1: Upper bound on Ny for the construction.

We interpret the entries in the table as follows. Consider the particular values
of n = 10 and £ = 2. The maximum nonlinearity equals Nr = 480 and d,,q; = 4.
Since the upper bound is met with equality for m = 1, it also reflects the results
obtained in [4]. Note that this construction is not optimal for m = 1. In a few cases
improvements have been found, e.g., for n = 10, = 1, Np = 484 was obtained in
[11]

An interesting question is how many additional output variables we can have,
while keeping the same maximal value for the nonlinearity Nr. In the example in
the previous section we verified that for m = 2, n = 10, and ¢ = 2 we were able to
fill up 16 rows of the matrix A without violating the constraints given in Theorem
1, getting the same nonlinearity Ny = 480 as in the case m = 1.

In order to construct the matrix A, we rely first on the following lemma.

Lemma 7 Let cy,...,cm—1 be a basis of a binary [n—d, m,t+1] linear code C. Let
B be a primitive element in Fom and (1,5,..., 8™ ") be a polynomial basis of Fom .
Define a bijection ¢ : Fom — C' by

$lao+ aB+ 1 8™") = agco + @161 + - A1t -

Consider the matriz

¢(1)  B(B) ... o(B")
¢B) BB ... (6™

B2 $(1) ... B(E™?)

For any linear combination of columns (not all zero) of the matriz A*, each nonzero
codeword of C will appear exactly once.
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Proof.  Since ¢ is a bijection, it is enough to show that the matrix

1 g ... pmt
g g ... g
,627;1_2 1 : ,6";_2
has the property that each element in [, will appear once in any nonzero linear

combination of columns of the above matrix.
Any nonzero linear combination of columns can be written as

1
g
(co+ciB+ 4 cmaf™) : ;
/627;‘—2
for some ¢y, ¢y ...,cn_1 € Fy, and the statement is obvious.

The conclusion from the lemma is that by using a linear [n — d,m,t + 1] code we
can fill 2™ — 1 out of the 2¢ rows of matrix A. Each nonzero codeword will then
appear exactly once in each column and row. Then we can select another linear
[n —d, m,t+1] code and fill another 2™ — 1 rows of matrix A. In order to maximize
the nonlinearity, no vector in A should appear more than once in each column (or
row). Hence, the intersection between the two codes should be the all zero word.
Continuing to select more codes to fill the matrix A, the intersection with any other
previously selected code must again be only the all zero word. This leads us to the
following definition.

Definition 7 A set of linear [n',m,t + 1] codes {C1,Cy,...,Cs} such that
CiﬂCj:{O}, 1<i1<j<s
is called a set of linear [n', m, ¢ + 1] nonintersecting codes.

For fixed values n',m,t + 1, we are interested in the maximal cardinality of a set
of linear [n',m,t + 1] nonintersecting codes. Combining the idea of nonintersecting
codes with the previous construction we can summarize in the following result.

Theorem 8 If there exists a set of linear [n—d, m,t+ 1] nonintersecting codes with
cardinality [2¢/(2™ — 1)] then there exists a t-resilient function F' : F} — T with
nonlinearity

NF — 2n—1 _ 2n—d—1.

Example 2 Continuing with the same numerical values as in the previous example,
e, n =10, t = 2, m = 2, we choose d = 4. The requirement is now to find
[2¢/(2™ —1)] = 6 nonintersecting linear [n — d, m,t+ 1] = [6,2, 3] codes in order to
mazimize the nonlinearity to Np = 271 — 2"=91 = 480. By computer search, we
verified that cardinality 6 was indeed possible, and the matriz A given in the previous
example was actually constructed through these 6 codes.

Now consider the same problem but for m = 3. Again, selecting d = 4 we must
now have [2¢/(2™ — 1)] = 3 nonintersecting linear [6,3,3] codes. This could not
be found by computer search. Hence, we must decrease d by one, d = 3. This will
result n a nonlinearity of Np = 448.
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V Lower bounds on the cardinality of a set of linear
nonintersecting codes

In this section we prove two lower (existence) bounds on the cardinality of a set of
nonintersecting linear codes. Using these bounds we are able to prove that there
exist resilient functions having higher nonlinearity than obtained using previous
constructions, i.e. [10, 27]. We do not discuss a practical construction of such
functions, but it should be pointed out that the technique used in obtaining the
bounds to be presented may be modified into a search algorithm. Firstly, we give a
general lower bound on the cardinality of a set of nonintersecting linear codes using
Gilbert-Varshamov type of arguments. We need an well-known lemma stated here
without proof (for a proof see e.g. [28]).

Lemma 9 LetFy be an n-dimensional vector space over Fy and0 < k <m <n. Let
N(m,n) denote the number of m-dimensional vector subspaces of Fy. Furthermore,
let N'(k,m,n) denote the number of m-dimensional vector subspaces containing a
gwen k-dimensional vector subspace of Fy. Then the following is valid,

H?:n—m—l—l (2i - 1)
H£1(2i - 1) ,

N'(k,m,n) = N(m — k,n — k). (21)

N(m,n) = (20)

Let M (n, m, dy;,) denote the maximal cardinality of a set of nonintersecting linear
codes for any given code parameters n,m, d,,;,. Using the Lemma 9 above we are
able to obtain the following existence bound on M (n, m, dyn)-

Theorem 10 Let the codes in the set have parameters [n,m, dpi,] and let S = {z €
F1 < wy(x) < dmin — 1}, Then M(n,m, dyy,) is lower-bounded by

(22)

M m o) > [N(m, n) — |S|N(m —1,n — 1)} |

@ —1)(N(m—1L,n—1)—1)

Proof.  Since the minimum distance of all the codes is d,;,, none of them is allowed
to intersect the sphere S. Let C denote the set of all linear codes of length n and
dimension m. According to Lemma 9, the total number of codes is N(m,n).

Any element (vector) in S is a 1-dimensional vector space. The number of codes
containing an arbitrary word z € S is N(m — 1,n — 1). Removing all codes in C
intersecting an element in S, i.e. all codes having too low minimum distance, leaves
us with at least

N(m,n) — N(m —1,n - 1)|S| (23)

codes in C. In general, some codes will contain more than one codeword from S,
and hence (23) is an upper bound on the number of codes intersecting the sphere S.

Now we can chose any code, say C!, of the remaining codes in C. An upper bound
on the number of codes intersecting C' in more than the zero word is now derived.

HCeclCnCt#{0}} < @2™-1)(N(m—1,n—1)—1).

12



This inequality is a consequence of the simple fact that any of 2™ — 1 nonzero
codewords of C! can be in at most N(m — 1,n — 1) — 1 codes.

We now continue to select a new code C? and remove all codes that intersect C?,
etc. It then follows that an Mth code can be added to the set of nonintersecting
codes if the following inequality holds,

N(m,n) — |SIN(m —1,n—1) — (M — 1)(2™ = 1)(N(m — 1,n — 1) — 1) > 0. (24)

From (24) one obtain (22) as stated.

A second lower bound on the cardinality of a set of nonintersecting linear codes
is obtained by considering the set of all possible permutations on the codewords
(i.e. column permutations) for a given linear code C. Thus, the condition for this
lower bound is the existence of a linear [n, m, dpy| code C together with its weight
distribution. Once we know one such code, we are able to compute a lower bound
on M (n, m, dy;,) which will depend on the weight distribution.

Theorem 11 (Permutation bound) Let C be a given [n,m,dy:,] linear code
specified by its weight distribution T(D) =" w;D'. Then

1=dmin

M o) 2 o )

Proof. Let A={1,2,...,n}andletS, = {7 : A— A} be aset of all permutations
on n letters acting on C with cardinality n!. Furthermore, let C* = {¢ € C :
wy(c) = i} be a set of cardinality |C%i| = w;. If 1" is the set of all permutations
that map any codeword in C" to some codeword contained in C*, i.e.,

¥ = {r € S, : w(c) € C*, for some ¢ € C*},

then we have |[I¥i| = w2i!(n — 7).

The idea is to remove all permutations m which maps any nonzero codeword of
C into C. Thus, the number of permutations to be discarded in order to obtain a
code 7(C) which does not intersect C' in more than the zero word is given by

n

Z w?il(n — 1)}, (26)

1=dmin

and the condition for a second code will be n! > 37, w?il(n—i)!. Clearly we can
proceed in the same manner, discarding all permutations which maps any nonzero
codeword of C into 7(C), as long as we have remaining permutations.

Thus, the M-th code can be added provided

nl—(M—1) Y wiil(n—1d)!>0. (27)
i=dmin
Rearranging (27) we obtain (25) as claimed.

In the next section these two bounds will be applied to prove the existence of
resilient functions with higher nonlinearity than those obtained in [10, 27].

13



VI Numerical results on the nonlinearity for re-
silient functions

The purpose of this section is to combine all the results given sofar in order to give
numerical values on the parameters that we can achieve.

In [10] the author considered the construction of [36, 8, ¢] nonlinear resilient func-
tions for different orders of resiliency £. In the table below we show through our
construction that there exist functions with higher nonlinearity, or in other words,
the lower bound on the nonlinearity is shifted upwards. The existence of functions
with parameters as in Table 2 is obtained using the sphere bound in Theorem 10
together with Theorem 8, except for the boldface entry which is computed using
the permutation bound in Theorem 11. For this specific entry, we started with a
(24,12, 8] Golay code and modified it into a [23,8,8] code. Thus, with parameter
d = 13 we had to find at least 33 nonintersecting linear codes in order to fill 8192
rows of matrix A. Using the weight distribution of [23, 8, 8] and the equation (25)
we could prove that there exist at least 34 nonintersecting linear codes, which yields
the lower bound on nonlinearity as given in Table 2.

I t | 7 | 5 4 | 3 2 1
Bound [10] 235 _ 227 235 _ 226 235 _ 225 235 _ 224 235 _ 223 235 _ 222
New bound 235 _ 222 235 _ 223 235 _ 222 235 _ 222 235 _ 221 235 _ 221

Table 2: Lower bounds on N for [36, 8, t]-resilient functions

Since the cardinality of the set of nonintersecting linear codes to be found depends
on the size of input parameters, i.e. n,m,t, we can calculate the lower bound on
the number of these codes for arbitrary values of n. But for moderate n, one can
also consider search algorithms based on the ideas behind the lower bounds. Such a
computer search has also been implemented, and the obtained results are presented
in the tables below.

INF]| n=9 | n=10 | n=11 | n=12 |
m || Th. 8 [[10] | Th. 8 [ [10] | Th. 8 [ [10] | Th. 8 | [10]

2 240 | 224 | 480 | 448 | 992 | 960 | 1984 | 1920
3 224 - 480 | 448 | 992 | 896 | 1984 | 1920
4 224 - 448 - 960 - 1920 -
) 224 - 448 - 960 - 1920 -
6 192 - 448 - 960 - 1920 -

Table 3: Highest achieved Ny for 1-resilient functions.
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| Nr | n = | n=10 | n=11 | n=12 |

m || Th. 8 | [L0]Th. 8 [10] [ Th. 8 [ [10] | Th. 8 | [10]
2 | 240 192 | 480 | 384 | 992 | 896 | 1984 | 1792
3 | 192 - 448 — | 960 | — | 1984 | 1792
4| 128 - 384 — | 896 | - | 1920 | -
5 0 - 256 | — | 768 | — | 1792 | -
6 0 - 0 | - | 512 | — | 1536 | -

Table 4: Highest achieved Ny for 2-resilient functions.

INF]| n=9 | n=10 | n=11 | n=12 |
m || Th. 8 [[10] | Th. 8 [ [10] | Th. 8 [ [10] | Th. 8 | [10]
2 | 192 | | 448 | 384 | 960 | 768 | 1984 | 1792
3 | 192 [ [ 384 | | 8% | - | 1920
4 || 128 | | 256 | - | 768 [ -~ | 1792
5 0 - 0 -~ | 512 | — ] 1536
6 0 - 0 - | 512 | — | 1024

Table 5: Highest achieved N for 3-resilient functions.

VII Conclusion

A new construction of highly nonlinear (n,m,t)-resilient functions has been pre-
sented. The construction leads to interesting coding theoretic questions regarding
the maximal cardinality of a set of [n,m,dp,] codes with the property that the
intersection of any two codes is the all zero codeword. We have found no previous
work that has considered this subject, although we have noted some similarities in
conjunction with the Griesmer bound as well as to codes for unequal error protection.

Comparing with the two different designs presented in [10, 27|, the proposed
construction gives a much better nonlinearity for the same value of resiliency. Still,
further improvements could be possible in some cases, possibly through construction
methods presented in [19].
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